|
|
| Line 3: |
Line 3: |
| | <StructureSection load='6vis' size='340' side='right'caption='[[6vis]], [[Resolution|resolution]] 2.79Å' scene=''> | | <StructureSection load='6vis' size='340' side='right'caption='[[6vis]], [[Resolution|resolution]] 2.79Å' scene=''> |
| | == Structural highlights == | | == Structural highlights == |
| - | <table><tr><td colspan='2'>[[6vis]] is a 3 chain structure with sequence from [http://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6VIS OCA]. For a <b>guided tour on the structure components</b> use [http://proteopedia.org/fgij/fg.htm?mol=6VIS FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[6vis]] is a 3 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6VIS OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6VIS FirstGlance]. <br> |
| - | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=GOL:GLYCEROL'>GOL</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.79Å</td></tr> |
| - | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">RBP2, CRBP2 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=GOL:GLYCEROL'>GOL</scene></td></tr> |
| - | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://proteopedia.org/fgij/fg.htm?mol=6vis FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6vis OCA], [http://pdbe.org/6vis PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6vis RCSB], [http://www.ebi.ac.uk/pdbsum/6vis PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6vis ProSAT]</span></td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6vis FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6vis OCA], [https://pdbe.org/6vis PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6vis RCSB], [https://www.ebi.ac.uk/pdbsum/6vis PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6vis ProSAT]</span></td></tr> |
| | </table> | | </table> |
| | == Function == | | == Function == |
| - | [[http://www.uniprot.org/uniprot/RET2_HUMAN RET2_HUMAN]] Intracellular transport of retinol. | + | [https://www.uniprot.org/uniprot/RET2_HUMAN RET2_HUMAN] Intracellular transport of retinol. |
| | <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| | == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
| Line 26: |
Line 26: |
| | __TOC__ | | __TOC__ |
| | </StructureSection> | | </StructureSection> |
| - | [[Category: Human]] | + | [[Category: Homo sapiens]] |
| | [[Category: Large Structures]] | | [[Category: Large Structures]] |
| - | [[Category: Geiger, J]] | + | [[Category: Geiger J]] |
| - | [[Category: Ghanbarpour, A]] | + | [[Category: Ghanbarpour A]] |
| - | [[Category: Domain swapped trimer]]
| + | |
| - | [[Category: Ilbp]]
| + | |
| - | [[Category: Lipid binding protein]]
| + | |
| Structural highlights
Function
RET2_HUMAN Intracellular transport of retinol.
Publication Abstract from PubMed
Domain-swapping is a mechanism for evolving new protein structure from extant scaffolds, and has been an efficient protein-engineering strategy for tailoring functional diversity. However, domain swapping can only be exploited if it can be controlled, especially in cases where various folds can coexist. Herein, we describe the structure of a domain-swapped trimer of the iLBP family member hCRBPII, and suggest a mechanism for domain-swapped trimerization. It is further shown that domain-swapped trimerization can be favored by strategic installation of a disulfide bond, thus demonstrating a strategy for fold control. We further show the domain-swapped trimer to be a useful protein design template by installing a high-affinity metal binding site through the introduction of a single mutation, taking advantage of its threefold symmetry. Together, these studies show how nature can promote oligomerization, stabilize a specific oligomer, and generate new function with minimal changes to the protein sequence.
Human Cellular Retinol Binding Protein II Forms a Domain-Swapped Trimer Representing a Novel Fold and a New Template for Protein Engineering.,Ghanbarpour A, Santos EM, Pinger C, Assar Z, Hossaini Nasr S, Vasileiou C, Spence D, Borhan B, Geiger JH Chembiochem. 2020 Jun 30. doi: 10.1002/cbic.202000405. PMID:32608180[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Ghanbarpour A, Santos EM, Pinger C, Assar Z, Hossaini Nasr S, Vasileiou C, Spence D, Borhan B, Geiger JH. Human Cellular Retinol Binding Protein II Forms a Domain-Swapped Trimer Representing a Novel Fold and a New Template for Protein Engineering. Chembiochem. 2020 Jun 30. doi: 10.1002/cbic.202000405. PMID:32608180 doi:http://dx.doi.org/10.1002/cbic.202000405
|