7jmv

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (15:06, 18 October 2023) (edit) (undo)
 
Line 1: Line 1:
==Crystal structure of the pea pathogenicity protein 2 from Madurella mycetomatis complexed with 4-nitrocatechol==
==Crystal structure of the pea pathogenicity protein 2 from Madurella mycetomatis complexed with 4-nitrocatechol==
-
<StructureSection load='7jmv' size='340' side='right'caption='[[7jmv]]' scene=''>
+
<StructureSection load='7jmv' size='340' side='right'caption='[[7jmv]], [[Resolution|resolution]] 1.57&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
-
<table><tr><td colspan='2'>Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7JMV OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7JMV FirstGlance]. <br>
+
<table><tr><td colspan='2'>[[7jmv]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Madurella_mycetomatis Madurella mycetomatis]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7JMV OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7JMV FirstGlance]. <br>
-
</td></tr><tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7jmv FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7jmv OCA], [https://pdbe.org/7jmv PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7jmv RCSB], [https://www.ebi.ac.uk/pdbsum/7jmv PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7jmv ProSAT]</span></td></tr>
+
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.57&#8491;</td></tr>
 +
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=4NC:4-NITROCATECHOL'>4NC</scene>, <scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=K:POTASSIUM+ION'>K</scene></td></tr>
 +
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7jmv FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7jmv OCA], [https://pdbe.org/7jmv PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7jmv RCSB], [https://www.ebi.ac.uk/pdbsum/7jmv PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7jmv ProSAT]</span></td></tr>
</table>
</table>
 +
== Function ==
 +
[https://www.uniprot.org/uniprot/A0A175WC91_9PEZI A0A175WC91_9PEZI]
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
Hydroxybenzoic acids, like gallic acid and protocatechuic acid, are highly abundant natural compounds. In biotechnology, they serve as critical precursors for various molecules in heterologous production pathways, but a major bottleneck is these acids' non-oxidative decarboxylation to hydroxybenzenes. Optimizing this step by pathway and enzyme engineering is tedious, partly because of the complicating cofactor dependencies of the commonly used prFMN-dependent decarboxylases. Here, we report the crystal structures (1.5-1.9 A) of two homologous fungal decarboxylases, AGDC1 from Arxula adenivorans, and PPP2 from Madurella mycetomatis. Remarkably, both decarboxylases are cofactor independent and are superior to prFMN-dependent decarboxylases when heterologously expressed in Saccharomyces cerevisiae. The organization of their active site, together with mutational studies, suggests a novel decarboxylation mechanism that combines acid-base catalysis and transition state stabilization. Both enzymes are trimers, with a central potassium binding site. In each monomer, potassium introduces a local twist in a beta-sheet close to the active site, which primes the critical H86-D40 dyad for catalysis. A conserved pair of tryptophans, W35 and W61, acts like a clamp that destabilizes the substrate by twisting its carboxyl group relative to the phenol moiety. These findings reveal AGDC1 and PPP2 as founding members of a so far overlooked group of cofactor independent decarboxylases and suggest strategies to engineer their unique chemistry for a wide variety of biotechnological applications.
 +
 +
Crystal structures of non-oxidative decarboxylases reveal a new mechanism of action with a catalytic dyad and structural twists.,Zeug M, Markovic N, Iancu CV, Tripp J, Oreb M, Choe JY Sci Rep. 2021 Feb 4;11(1):3056. doi: 10.1038/s41598-021-82660-z. PMID:33542397<ref>PMID:33542397</ref>
 +
 +
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 +
</div>
 +
<div class="pdbe-citations 7jmv" style="background-color:#fffaf0;"></div>
 +
== References ==
 +
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>
[[Category: Large Structures]]
[[Category: Large Structures]]
 +
[[Category: Madurella mycetomatis]]
[[Category: Choe J]]
[[Category: Choe J]]
[[Category: Iancu CV]]
[[Category: Iancu CV]]

Current revision

Crystal structure of the pea pathogenicity protein 2 from Madurella mycetomatis complexed with 4-nitrocatechol

PDB ID 7jmv

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools