7kd8

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (15:22, 18 October 2023) (edit) (undo)
 
Line 1: Line 1:
==TtgR C137I I141W M167L F168Y mutant in complex with resveratrol==
==TtgR C137I I141W M167L F168Y mutant in complex with resveratrol==
-
<StructureSection load='7kd8' size='340' side='right'caption='[[7kd8]]' scene=''>
+
<StructureSection load='7kd8' size='340' side='right'caption='[[7kd8]], [[Resolution|resolution]] 1.71&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
-
<table><tr><td colspan='2'>Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7KD8 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7KD8 FirstGlance]. <br>
+
<table><tr><td colspan='2'>[[7kd8]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Pseudomonas_putida_DOT-T1E Pseudomonas putida DOT-T1E]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7KD8 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7KD8 FirstGlance]. <br>
-
</td></tr><tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7kd8 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7kd8 OCA], [https://pdbe.org/7kd8 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7kd8 RCSB], [https://www.ebi.ac.uk/pdbsum/7kd8 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7kd8 ProSAT]</span></td></tr>
+
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.71&#8491;</td></tr>
 +
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=STL:RESVERATROL'>STL</scene></td></tr>
 +
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7kd8 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7kd8 OCA], [https://pdbe.org/7kd8 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7kd8 RCSB], [https://www.ebi.ac.uk/pdbsum/7kd8 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7kd8 ProSAT]</span></td></tr>
</table>
</table>
 +
== Function ==
 +
[https://www.uniprot.org/uniprot/TTGR_PSEPT TTGR_PSEPT] Represses expression from the ttgABC operon promoter and its own expression. Binds to a promoter region between the divergently transcribed ttgR and ttgABC genes/operons; in the presence of chloramphenicol or tetracycline this binding no longer occurs and ttgR and ttgABC are derepressed. This suggests that TtgR binds these antibiotics.<ref>PMID:11251828</ref>
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
Epistasis is a major determinant in the emergence of novel protein function. In allosteric proteins, direct interactions between inducer-binding mutations propagate through the allosteric network, manifesting as epistasis at the level of biological function. Elucidating this relationship between local interactions and their global effects is essential to understanding evolution of allosteric proteins. We integrate computational design, structural and biophysical analysis to characterize the emergence of novel inducer specificity in an allosteric transcription factor. Adaptive landscapes of different inducers of the designed mutant show that a few strong epistatic interactions constrain the number of viable sequence pathways, revealing ridges in the fitness landscape leading to new specificity. The structure of the designed mutant shows that a striking change in inducer orientation still retains allosteric function. Comparing biophysical and functional properties suggests a nonlinear relationship between inducer binding affinity and allostery. Our results highlight the functional and evolutionary complexity of allosteric proteins.
 +
 +
Epistasis shapes the fitness landscape of an allosteric specificity switch.,Nishikawa KK, Hoppe N, Smith R, Bingman C, Raman S Nat Commun. 2021 Sep 21;12(1):5562. doi: 10.1038/s41467-021-25826-7. PMID:34548494<ref>PMID:34548494</ref>
 +
 +
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 +
</div>
 +
<div class="pdbe-citations 7kd8" style="background-color:#fffaf0;"></div>
 +
 +
==See Also==
 +
*[[Tetracycline repressor protein 3D structures|Tetracycline repressor protein 3D structures]]
 +
== References ==
 +
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>
[[Category: Large Structures]]
[[Category: Large Structures]]
 +
[[Category: Pseudomonas putida DOT-T1E]]
[[Category: Bingman CA]]
[[Category: Bingman CA]]
[[Category: Nishikawa KK]]
[[Category: Nishikawa KK]]
[[Category: Raman S]]
[[Category: Raman S]]
[[Category: Smith RW]]
[[Category: Smith RW]]

Current revision

TtgR C137I I141W M167L F168Y mutant in complex with resveratrol

PDB ID 7kd8

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools