7l0z
From Proteopedia
(Difference between revisions)
Line 1: | Line 1: | ||
==Spinach variant bound to DFHBI-1T== | ==Spinach variant bound to DFHBI-1T== | ||
- | <StructureSection load='7l0z' size='340' side='right'caption='[[7l0z]]' scene=''> | + | <StructureSection load='7l0z' size='340' side='right'caption='[[7l0z]], [[Resolution|resolution]] 2.10Å' scene=''> |
== Structural highlights == | == Structural highlights == | ||
- | <table><tr><td colspan='2'>Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7L0Z OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7L0Z FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[7l0z]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Synthetic_construct Synthetic construct]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7L0Z OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7L0Z FirstGlance]. <br> |
- | </td></tr><tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7l0z FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7l0z OCA], [https://pdbe.org/7l0z PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7l0z RCSB], [https://www.ebi.ac.uk/pdbsum/7l0z PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7l0z ProSAT]</span></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.1Å</td></tr> |
+ | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=2ZY:(5Z)-5-(3,5-DIFLUORO-4-HYDROXYBENZYLIDENE)-2-METHYL-3-(2,2,2-TRIFLUOROETHYL)-3,5-DIHYDRO-4H-IMIDAZOL-4-ONE'>2ZY</scene>, <scene name='pdbligand=K:POTASSIUM+ION'>K</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=NA:SODIUM+ION'>NA</scene>, <scene name='pdbligand=PO4:PHOSPHATE+ION'>PO4</scene>, <scene name='pdbligand=SPM:SPERMINE'>SPM</scene></td></tr> | ||
+ | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7l0z FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7l0z OCA], [https://pdbe.org/7l0z PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7l0z RCSB], [https://www.ebi.ac.uk/pdbsum/7l0z PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7l0z ProSAT]</span></td></tr> | ||
</table> | </table> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | To further understand the transcriptome, new tools capable of measuring folding, interactions, and localization of RNA are needed. Although Forster resonance energy transfer (FRET) is an angle- and distance-dependent phenomenon, the majority of FRET measurements have been used to report distances, by assuming rotationally averaged donor-acceptor pairs. Angle-dependent FRET measurements have proven challenging for nucleic acids due to the difficulties in incorporating fluorophores rigidly into local substructures in a biocompatible manner. Fluorescence turn-on RNA aptamers are genetically encodable tags that appear to rigidly confine their cognate fluorophores, and thus have the potential to report angular-resolved FRET. Here, we use the fluorescent aptamers Broccoli and Mango-III as donor and acceptor, respectively, to measure the angular dependence of FRET. Joining the two fluorescent aptamers by a helix of variable length allowed systematic rotation of the acceptor fluorophore relative to the donor. FRET oscillated in a sinusoidal manner as a function of helix length, consistent with simulated data generated from models of oriented fluorophores separated by an inflexible helix. Analysis of the orientation dependence of FRET allowed us to demonstrate structural rigidification of the NiCo riboswitch upon transition metal-ion binding. This application of fluorescence turn-on aptamers opens the way to improved structural interpretation of ensemble and single-molecule FRET measurements of RNA. | ||
+ | |||
+ | Fluorogenic aptamers resolve the flexibility of RNA junctions using orientation-dependent FRET.,Jeng SCY, Trachman RJ 3rd, Weissenboeck F, Truong L, Link KA, Jepsen MDE, Knutson JR, Andersen ES, Ferre-D'Amare AR, Unrau PJ RNA. 2021 Apr;27(4):433-444. doi: 10.1261/rna.078220.120. Epub 2020 Dec 29. PMID:33376189<ref>PMID:33376189</ref> | ||
+ | |||
+ | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
+ | </div> | ||
+ | <div class="pdbe-citations 7l0z" style="background-color:#fffaf0;"></div> | ||
+ | == References == | ||
+ | <references/> | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
[[Category: Large Structures]] | [[Category: Large Structures]] | ||
+ | [[Category: Synthetic construct]] | ||
[[Category: Ferre-D'Amare AR]] | [[Category: Ferre-D'Amare AR]] | ||
[[Category: Trachman RJ]] | [[Category: Trachman RJ]] | ||
[[Category: Truong L]] | [[Category: Truong L]] |
Current revision
Spinach variant bound to DFHBI-1T
|