7n1j

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (16:23, 18 October 2023) (edit) (undo)
 
Line 1: Line 1:
-
====
+
==Crystal structure of FGFR4 domain 3 in complex with a de novo-designed mini-binder==
-
<StructureSection load='7n1j' size='340' side='right'caption='[[7n1j]]' scene=''>
+
<StructureSection load='7n1j' size='340' side='right'caption='[[7n1j]], [[Resolution|resolution]] 2.99&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
-
<table><tr><td colspan='2'>Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id= OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol= FirstGlance]. <br>
+
<table><tr><td colspan='2'>[[7n1j]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens] and [https://en.wikipedia.org/wiki/Synthetic_construct Synthetic construct]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7N1J OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7N1J FirstGlance]. <br>
-
</td></tr><tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7n1j FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7n1j OCA], [https://pdbe.org/7n1j PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7n1j RCSB], [https://www.ebi.ac.uk/pdbsum/7n1j PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7n1j ProSAT]</span></td></tr>
+
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.99&#8491;</td></tr>
 +
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7n1j FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7n1j OCA], [https://pdbe.org/7n1j PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7n1j RCSB], [https://www.ebi.ac.uk/pdbsum/7n1j PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7n1j ProSAT]</span></td></tr>
</table>
</table>
 +
== Function ==
 +
[https://www.uniprot.org/uniprot/FGFR4_HUMAN FGFR4_HUMAN] Tyrosine-protein kinase that acts as cell-surface receptor for fibroblast growth factors and plays a role in the regulation of cell proliferation, differentiation and migration, and in regulation of lipid metabolism, bile acid biosynthesis, glucose uptake, vitamin D metabolism and phosphate homeostasis. Required for normal down-regulation of the expression of CYP7A1, the rate-limiting enzyme in bile acid synthesis, in response to FGF19. Phosphorylates PLCG1 and FRS2. Ligand binding leads to the activation of several signaling cascades. Activation of PLCG1 leads to the production of the cellular signaling molecules diacylglycerol and inositol 1,4,5-trisphosphate. Phosphorylation of FRS2 triggers recruitment of GRB2, GAB1, PIK3R1 and SOS1, and mediates activation of RAS, MAPK1/ERK2, MAPK3/ERK1 and the MAP kinase signaling pathway, as well as of the AKT1 signaling pathway. Promotes SRC-dependent phosphorylation of the matrix protease MMP14 and its lysosomal degradation. FGFR4 signaling is down-regulated by receptor internalization and degradation; MMP14 promotes internalization and degradation of FGFR4. Mutations that lead to constitutive kinase activation or impair normal FGFR4 inactivation lead to aberrant signaling.<ref>PMID:7680645</ref> <ref>PMID:7518429</ref> <ref>PMID:8663044</ref> <ref>PMID:11433297</ref> <ref>PMID:16597617</ref> <ref>PMID:17623664</ref> <ref>PMID:17311277</ref> <ref>PMID:18480409</ref> <ref>PMID:18670643</ref> <ref>PMID:20683963</ref> <ref>PMID:20018895</ref> <ref>PMID:20798051</ref> <ref>PMID:21653700</ref> <ref>PMID:20876804</ref>
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
The design of proteins that bind to a specific site on the surface of a target protein using no information other than the three-dimensional structure of the target remains an outstanding challenge(1-5). We describe a general solution to this problem which starts with a broad exploration of the very large space of possible binding modes to a selected region of a protein surface, and then intensifies the search in the vicinity of the most promising binding modes. We demonstrate its very broad applicability by de novo design of binding proteins to 12 diverse protein targets with very different shapes and surface properties. Biophysical characterization shows that the binders, which are all smaller than 65 amino acids, are hyperstable and following experimental optimization bind their targets with nanomolar to picomolar affinities. We succeeded in solving crystal structures of five of the binder-target complexes, and all five are very close to the corresponding computational design models. Experimental data on nearly half a million computational designs and hundreds of thousands of point mutants provide detailed feedback on the strengths and limitations of the method and of our current understanding of protein-protein interactions, and should guide improvement of both. Our approach now enables targeted design of binders to sites of interest on a wide variety of proteins for therapeutic and diagnostic applications.
 +
 +
Design of protein binding proteins from target structure alone.,Cao L, Coventry B, Goreshnik I, Huang B, Park JS, Jude KM, Markovic I, Kadam RU, Verschueren KHG, Verstraete K, Walsh STR, Bennett N, Phal A, Yang A, Kozodoy L, DeWitt M, Picton L, Miller L, Strauch EM, DeBouver ND, Pires A, Bera AK, Halabiya S, Hammerson B, Yang W, Bernard S, Stewart L, Wilson IA, Ruohola-Baker H, Schlessinger J, Lee S, Savvides SN, Garcia KC, Baker D Nature. 2022 Mar 24. pii: 10.1038/s41586-022-04654-9. doi:, 10.1038/s41586-022-04654-9. PMID:35332283<ref>PMID:35332283</ref>
 +
 +
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 +
</div>
 +
<div class="pdbe-citations 7n1j" style="background-color:#fffaf0;"></div>
 +
 +
==See Also==
 +
*[[Fibroblast growth factor receptor 3D receptor|Fibroblast growth factor receptor 3D receptor]]
 +
== References ==
 +
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>
 +
[[Category: Homo sapiens]]
[[Category: Large Structures]]
[[Category: Large Structures]]
-
[[Category: Z-disk]]
+
[[Category: Synthetic construct]]
 +
[[Category: Lee S]]
 +
[[Category: Park JS]]

Current revision

Crystal structure of FGFR4 domain 3 in complex with a de novo-designed mini-binder

PDB ID 7n1j

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools