|
|
Line 4: |
Line 4: |
| == Structural highlights == | | == Structural highlights == |
| <table><tr><td colspan='2'>[[7tgu]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7TGU OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7TGU FirstGlance]. <br> | | <table><tr><td colspan='2'>[[7tgu]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7TGU OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7TGU FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=I44:(4S,7S,11R,13E,19S)-N-[2-(2-aminoethoxy)ethyl]-4-[(4-benzoylphenyl)methyl]-7-benzyl-3,6,12,15,21-pentaoxo-1,3,4,5,6,7,8,9,10,12,15,16,17,18,19,20,21,22-octadecahydro-2H-7,11-methano-2,5,11,16,20-benzopentaazacyclotetracosine-19-carboxamide'>I44</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.21Å</td></tr> |
| + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=I44:(4S,7S,11R,13E,19S)-N-[2-(2-aminoethoxy)ethyl]-4-[(4-benzoylphenyl)methyl]-7-benzyl-3,6,12,15,21-pentaoxo-1,3,4,5,6,7,8,9,10,12,15,16,17,18,19,20,21,22-octadecahydro-2H-7,11-methano-2,5,11,16,20-benzopentaazacyclotetracosine-19-carboxamide'>I44</scene></td></tr> |
| <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7tgu FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7tgu OCA], [https://pdbe.org/7tgu PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7tgu RCSB], [https://www.ebi.ac.uk/pdbsum/7tgu PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7tgu ProSAT]</span></td></tr> | | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7tgu FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7tgu OCA], [https://pdbe.org/7tgu PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7tgu RCSB], [https://www.ebi.ac.uk/pdbsum/7tgu PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7tgu ProSAT]</span></td></tr> |
| </table> | | </table> |
Line 18: |
Line 19: |
| </div> | | </div> |
| <div class="pdbe-citations 7tgu" style="background-color:#fffaf0;"></div> | | <div class="pdbe-citations 7tgu" style="background-color:#fffaf0;"></div> |
| + | |
| + | ==See Also== |
| + | *[[Cyclophilin 3D structures|Cyclophilin 3D structures]] |
| == References == | | == References == |
| <references/> | | <references/> |
| Structural highlights
Function
PPIF_HUMAN PPIases accelerate the folding of proteins. It catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides. Involved in regulation of the mitochondrial permeability transition pore (mPTP). It is proposed that its association with the mPTP is masking a binding site for inhibiting inorganic phosphate (Pi) and promotes the open probablity of the mPTP leading to apoptosis or necrosis; the requirement of the PPIase activity for this function is debated. In cooperation with mitochondrial TP53 is involved in activating oxidative stress-induced necrosis. Involved in modulation of mitochondrial membrane F(1)F(0) ATP synthase activity and regulation of mitochondrial matrix adenine nucleotide levels. Has anti-apoptotic activity independently of mPTP and in cooperation with BCL2 inhibits cytochrome c-dependent apoptosis.[1] [2]
Publication Abstract from PubMed
Although cyclophilins are attractive targets for probing biology and therapeutic intervention, no subtype-selective cyclophilin inhibitors have been described. We discovered novel cyclophilin inhibitors from the in vitro selection of a DNA-templated library of 256,000 drug-like macrocycles for cyclophilin D (CypD) affinity. Iterated macrocycle engineering guided by ten X-ray co-crystal structures yielded potent and selective inhibitors (half maximal inhibitory concentration (IC50) = 10 nM) that bind the active site of CypD and also make novel interactions with non-conserved residues in the S2 pocket, an adjacent exo-site. The resulting macrocycles inhibit CypD activity with 21- to >10,000-fold selectivity over other cyclophilins and inhibit mitochondrial permeability transition pore opening in isolated mitochondria. We further exploited S2 pocket interactions to develop the first cyclophilin E (CypE)-selective inhibitor, which forms a reversible covalent bond with a CypE S2 pocket lysine, and exhibits 30- to >4,000-fold selectivity over other cyclophilins. These findings reveal a strategy to generate isoform-selective small-molecule cyclophilin modulators, advancing their suitability as targets for biological investigation and therapeutic development.
Discovery and molecular basis of subtype-selective cyclophilin inhibitors.,Peterson AA, Rangwala AM, Thakur MK, Ward PS, Hung C, Outhwaite IR, Chan AI, Usanov DL, Mootha VK, Seeliger MA, Liu DR Nat Chem Biol. 2022 Nov;18(11):1184-1195. doi: 10.1038/s41589-022-01116-1. Epub, 2022 Sep 26. PMID:36163383[3]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Eliseev RA, Malecki J, Lester T, Zhang Y, Humphrey J, Gunter TE. Cyclophilin D interacts with Bcl2 and exerts an anti-apoptotic effect. J Biol Chem. 2009 Apr 10;284(15):9692-9. doi: 10.1074/jbc.M808750200. Epub 2009, Feb 19. PMID:19228691 doi:http://dx.doi.org/10.1074/jbc.M808750200
- ↑ Vaseva AV, Marchenko ND, Ji K, Tsirka SE, Holzmann S, Moll UM. p53 opens the mitochondrial permeability transition pore to trigger necrosis. Cell. 2012 Jun 22;149(7):1536-48. doi: 10.1016/j.cell.2012.05.014. PMID:22726440 doi:10.1016/j.cell.2012.05.014
- ↑ Peterson AA, Rangwala AM, Thakur MK, Ward PS, Hung C, Outhwaite IR, Chan AI, Usanov DL, Mootha VK, Seeliger MA, Liu DR. Discovery and molecular basis of subtype-selective cyclophilin inhibitors. Nat Chem Biol. 2022 Nov;18(11):1184-1195. doi: 10.1038/s41589-022-01116-1. Epub, 2022 Sep 26. PMID:36163383 doi:http://dx.doi.org/10.1038/s41589-022-01116-1
|