7u2p
From Proteopedia
(Difference between revisions)
Line 1: | Line 1: | ||
==Structure of TcdA GTD in complex with RhoA== | ==Structure of TcdA GTD in complex with RhoA== | ||
- | <StructureSection load='7u2p' size='340' side='right'caption='[[7u2p]]' scene=''> | + | <StructureSection load='7u2p' size='340' side='right'caption='[[7u2p]], [[Resolution|resolution]] 2.60Å' scene=''> |
== Structural highlights == | == Structural highlights == | ||
- | <table><tr><td colspan='2'>Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7U2P OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7U2P FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[7u2p]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Clostridioides_difficile Clostridioides difficile] and [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7U2P OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7U2P FirstGlance]. <br> |
- | </td></tr><tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7u2p FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7u2p OCA], [https://pdbe.org/7u2p PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7u2p RCSB], [https://www.ebi.ac.uk/pdbsum/7u2p PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7u2p ProSAT]</span></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.596Å</td></tr> |
+ | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=GDP:GUANOSINE-5-DIPHOSPHATE'>GDP</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=MN:MANGANESE+(II)+ION'>MN</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene>, <scene name='pdbligand=UPG:URIDINE-5-DIPHOSPHATE-GLUCOSE'>UPG</scene></td></tr> | ||
+ | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7u2p FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7u2p OCA], [https://pdbe.org/7u2p PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7u2p RCSB], [https://www.ebi.ac.uk/pdbsum/7u2p PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7u2p ProSAT]</span></td></tr> | ||
</table> | </table> | ||
+ | == Function == | ||
+ | [https://www.uniprot.org/uniprot/TCDA_CLODI TCDA_CLODI] Precursor of a cytotoxin that targets and disrupts the colonic epithelium, inducing the host inflammatory and innate immune responses and resulting in diarrhea and pseudomembranous colitis (PubMed:20844489). TcdA and TcdB constitute the main toxins that mediate the pathology of C.difficile infection, an opportunistic pathogen that colonizes the colon when the normal gut microbiome is disrupted (PubMed:19252482, PubMed:20844489). Compared to TcdB, TcdA is less virulent and less important for inducing the host inflammatory and innate immune responses (PubMed:19252482). This form constitutes the precursor of the toxin: it enters into host cells and mediates autoprocessing to release the active toxin (Glucosyltransferase TcdA) into the host cytosol (By similarity). Targets colonic epithelia by binding to some receptor, and enters host cells via clathrin-mediated endocytosis (By similarity). Binding to LDLR, as well as carbohydrates and sulfated glycosaminoglycans on host cell surface contribute to entry into cells (PubMed:1670930, PubMed:31160825, PubMed:16622409). In contrast to TcdB, Frizzled receptors FZD1, FZD2 and FZD7 do not act as host receptors in the colonic epithelium for TcdA (PubMed:27680706). Once entered into host cells, acidification in the endosome promotes the membrane insertion of the translocation region and formation of a pore, leading to translocation of the GT44 and peptidase C80 domains across the endosomal membrane (By similarity). This activates the peptidase C80 domain and autocatalytic processing, releasing the N-terminal part (Glucosyltransferase TcdA), which constitutes the active part of the toxin, in the cytosol (PubMed:17334356, PubMed:19553670, PubMed:27571750).[UniProtKB:P18177]<ref>PMID:16622409</ref> <ref>PMID:1670930</ref> <ref>PMID:17334356</ref> <ref>PMID:19252482</ref> <ref>PMID:19553670</ref> <ref>PMID:20844489</ref> <ref>PMID:27571750</ref> <ref>PMID:27680706</ref> <ref>PMID:31160825</ref> Active form of the toxin, which is released into the host cytosol following autoprocessing and inactivates small GTPases (PubMed:7775453, PubMed:24905543, PubMed:30622517, PubMed:22747490, PubMed:22267739). Acts by mediating monoglucosylation of small GTPases of the Rho family (Rac1, RhoA, RhoB, RhoC, Rap2A and Cdc42) in host cells at the conserved threonine residue located in the switch I region ('Thr-37/35'), using UDP-alpha-D-glucose as the sugar donor (PubMed:7775453, PubMed:24905543, PubMed:30622517, PubMed:22747490, PubMed:22267739). Monoglucosylation of host small GTPases completely prevents the recognition of the downstream effector, blocking the GTPases in their inactive form, leading to actin cytoskeleton disruption and cell death, resulting in the loss of colonic epithelial barrier function (PubMed:7775453). Also able to catalyze monoglucosylation of some members of the Ras family (H-Ras/HRAS, K-Ras/KRAS and N-Ras/NRAS), but with much less efficiency than with Rho proteins, suggesting that it does not act on Ras proteins in vivo (PubMed:30622517).<ref>PMID:22267739</ref> <ref>PMID:22747490</ref> <ref>PMID:24905543</ref> <ref>PMID:30622517</ref> <ref>PMID:7775453</ref> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | Clostridioides difficile is one of the most common causes of antibiotic-associated diarrhea in developed countries. As key virulence factors of C. difficile, toxin A (TcdA) and toxin B (TcdB) act by glucosylating and inactivating Rho and Ras family small GTPases in host cells, which leads to actin cytoskeleton disruption, cell rounding, and ultimately cell death. Here we present the co-crystal structure of the glucosyltransferase domain (GTD) of TcdA in complex with its substrate human RhoA at 2.60-angstrom resolution. This structure reveals that TcdA GTD grips RhoA mainly through its switch I and switch II regions, which is complemented by interactions involving RhoA's pre-switch I region. Comprehensive structural comparisons between the TcdA GTD-RhoA complex and the structures of TcdB GTD in complex with Cdc42 and R-Ras reveal both the conserved and divergent features of these two toxins in terms of substrate recognition. Taken together, these findings establish the structural basis for TcdA recognition of small GTPases and advance our understanding of the substrates selectivity of large clostridial toxins. | ||
+ | |||
+ | Structure of the glucosyltransferase domain of TcdA in complex with RhoA provides insights into substrate recognition.,Chen B, Liu Z, Perry K, Jin R Sci Rep. 2022 May 30;12(1):9028. doi: 10.1038/s41598-022-12909-8. PMID:35637242<ref>PMID:35637242</ref> | ||
+ | |||
+ | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
+ | </div> | ||
+ | <div class="pdbe-citations 7u2p" style="background-color:#fffaf0;"></div> | ||
+ | == References == | ||
+ | <references/> | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
+ | [[Category: Clostridioides difficile]] | ||
+ | [[Category: Homo sapiens]] | ||
[[Category: Large Structures]] | [[Category: Large Structures]] | ||
[[Category: Baohua C]] | [[Category: Baohua C]] |
Current revision
Structure of TcdA GTD in complex with RhoA
|