|
|
Line 3: |
Line 3: |
| <StructureSection load='1tvp' size='340' side='right'caption='[[1tvp]], [[Resolution|resolution]] 1.60Å' scene=''> | | <StructureSection load='1tvp' size='340' side='right'caption='[[1tvp]], [[Resolution|resolution]] 1.60Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[1tvp]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/"alteromonas_marinopraesens"_(zobell_and_upham_1944)_baumann_et_al._1972 "alteromonas marinopraesens" (zobell and upham 1944) baumann et al. 1972]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1TVP OCA]. For a <b>guided tour on the structure components</b> use [http://proteopedia.org/fgij/fg.htm?mol=1TVP FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[1tvp]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Pseudoalteromonas_haloplanktis Pseudoalteromonas haloplanktis]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1TVP OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1TVP FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=BGC:BETA-D-GLUCOSE'>BGC</scene>, <scene name='pdbligand=EPE:4-(2-HYDROXYETHYL)-1-PIPERAZINE+ETHANESULFONIC+ACID'>EPE</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.6Å</td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[1tvn|1tvn]]</div></td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=BGC:BETA-D-GLUCOSE'>BGC</scene>, <scene name='pdbligand=EPE:4-(2-HYDROXYETHYL)-1-PIPERAZINE+ETHANESULFONIC+ACID'>EPE</scene>, <scene name='pdbligand=PRD_900005:beta-cellobiose'>PRD_900005</scene></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">celG ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=228 "Alteromonas marinopraesens" (ZoBell and Upham 1944) Baumann et al. 1972])</td></tr>
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1tvp FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1tvp OCA], [https://pdbe.org/1tvp PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1tvp RCSB], [https://www.ebi.ac.uk/pdbsum/1tvp PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1tvp ProSAT]</span></td></tr> |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Cellulase Cellulase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.2.1.4 3.2.1.4] </span></td></tr> | + | |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://proteopedia.org/fgij/fg.htm?mol=1tvp FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1tvp OCA], [http://pdbe.org/1tvp PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=1tvp RCSB], [http://www.ebi.ac.uk/pdbsum/1tvp PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=1tvp ProSAT]</span></td></tr> | + | |
| </table> | | </table> |
| + | == Function == |
| + | [https://www.uniprot.org/uniprot/O86099_PSEHA O86099_PSEHA] |
| == Evolutionary Conservation == | | == Evolutionary Conservation == |
| [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
Line 36: |
Line 36: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Cellulase]] | |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Aghajari, N]] | + | [[Category: Pseudoalteromonas haloplanktis]] |
- | [[Category: Haser, R]] | + | [[Category: Aghajari N]] |
- | [[Category: Violot, S]] | + | [[Category: Haser R]] |
- | [[Category: Cellobiose complex]] | + | [[Category: Violot S]] |
- | [[Category: Clan gh-a]]
| + | |
- | [[Category: Family 5-2]]
| + | |
- | [[Category: Glycoside hydrolase]]
| + | |
- | [[Category: Hydrolase]]
| + | |
| Structural highlights
Function
O86099_PSEHA
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
Pseudoalteromonas haloplanktis is a psychrophilic Gram-negative bacterium isolated in Antarctica, that lives on organic remains of algae. This bacterium converts the cellulose, highly constitutive of algae, into an immediate nutritive form by biodegrading this biopolymer. To understand the mechanisms of cold adaptation of its enzymatic components, we studied the structural properties of an endoglucanase, Cel5G, by complementary methods, X-ray crystallography and small angle X-ray scattering. Using X-ray crystallography, we determined the structure of the catalytic core module of this family 5 endoglucanase, at 1.4A resolution in its native form and at 1.6A in the cellobiose-bound form. The catalytic module of Cel5G presents the (beta/alpha)(8)-barrel structure typical of clan GH-A of glycoside hydrolase families. The structural comparison of the catalytic core of Cel5G with the mesophilic catalytic core of Cel5A from Erwinia chrysanthemi revealed modifications at the atomic level leading to higher flexibility and thermolability, which might account for the higher activity of Cel5G at low temperatures. Using small angle X-ray scattering we further explored the structure at the entire enzyme level. We analyzed the dimensions, shape, and conformation of Cel5G full length in solution and especially of the linker between the catalytic module and the cellulose-binding module. The results showed that the linker is unstructured, and unusually long and flexible, a peculiarity that distinguishes it from its mesophilic counterpart. Loops formed at the base by disulfide bridges presumably add constraints to stabilize the most extended conformations. These results suggest that the linker plays a major role in cold adaptation of this psychrophilic enzyme, allowing steric optimization of substrate accessibility.
Structure of a full length psychrophilic cellulase from Pseudoalteromonas haloplanktis revealed by X-ray diffraction and small angle X-ray scattering.,Violot S, Aghajari N, Czjzek M, Feller G, Sonan GK, Gouet P, Gerday C, Haser R, Receveur-Brechot V J Mol Biol. 2005 May 20;348(5):1211-24. Epub 2005 Mar 25. PMID:15854656[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Violot S, Aghajari N, Czjzek M, Feller G, Sonan GK, Gouet P, Gerday C, Haser R, Receveur-Brechot V. Structure of a full length psychrophilic cellulase from Pseudoalteromonas haloplanktis revealed by X-ray diffraction and small angle X-ray scattering. J Mol Biol. 2005 May 20;348(5):1211-24. Epub 2005 Mar 25. PMID:15854656 doi:10.1016/j.jmb.2005.03.026
|