|
|
Line 3: |
Line 3: |
| <StructureSection load='1wm2' size='340' side='right'caption='[[1wm2]], [[Resolution|resolution]] 1.60Å' scene=''> | | <StructureSection load='1wm2' size='340' side='right'caption='[[1wm2]], [[Resolution|resolution]] 1.60Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[1wm2]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1WM2 OCA]. For a <b>guided tour on the structure components</b> use [http://proteopedia.org/fgij/fg.htm?mol=1WM2 FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[1wm2]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1WM2 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1WM2 FirstGlance]. <br> |
- | </td></tr><tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[1wm3|1wm3]]</div></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.6Å</td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">SUMO-2 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr>
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1wm2 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1wm2 OCA], [https://pdbe.org/1wm2 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1wm2 RCSB], [https://www.ebi.ac.uk/pdbsum/1wm2 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1wm2 ProSAT]</span></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://proteopedia.org/fgij/fg.htm?mol=1wm2 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1wm2 OCA], [http://pdbe.org/1wm2 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=1wm2 RCSB], [http://www.ebi.ac.uk/pdbsum/1wm2 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=1wm2 ProSAT]</span></td></tr> | + | |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/SUMO2_HUMAN SUMO2_HUMAN]] Ubiquitin-like protein that can be covalently attached to proteins as a monomer or as a lysine-linked polymer. Covalent attachment via an isopeptide bond to its substrates requires prior activation by the E1 complex SAE1-SAE2 and linkage to the E2 enzyme UBE2I, and can be promoted by an E3 ligase such as PIAS1-4, RANBP2 or CBX4. This post-translational modification on lysine residues of proteins plays a crucial role in a number of cellular processes such as nuclear transport, DNA replication and repair, mitosis and signal transduction. Polymeric SUMO2 chains are also susceptible to polyubiquitination which functions as a signal for proteasomal degradation of modified proteins.<ref>PMID:9556629</ref> <ref>PMID:18538659</ref> <ref>PMID:18408734</ref> | + | [https://www.uniprot.org/uniprot/SUMO2_HUMAN SUMO2_HUMAN] Ubiquitin-like protein that can be covalently attached to proteins as a monomer or as a lysine-linked polymer. Covalent attachment via an isopeptide bond to its substrates requires prior activation by the E1 complex SAE1-SAE2 and linkage to the E2 enzyme UBE2I, and can be promoted by an E3 ligase such as PIAS1-4, RANBP2 or CBX4. This post-translational modification on lysine residues of proteins plays a crucial role in a number of cellular processes such as nuclear transport, DNA replication and repair, mitosis and signal transduction. Polymeric SUMO2 chains are also susceptible to polyubiquitination which functions as a signal for proteasomal degradation of modified proteins.<ref>PMID:9556629</ref> <ref>PMID:18538659</ref> <ref>PMID:18408734</ref> |
| == Evolutionary Conservation == | | == Evolutionary Conservation == |
| [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
Line 36: |
Line 35: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Human]] | + | [[Category: Homo sapiens]] |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Huang, W C]] | + | [[Category: Huang W-C]] |
- | [[Category: Ko, T P]] | + | [[Category: Ko T-P]] |
- | [[Category: Li, S S.L]] | + | [[Category: Li SS-L]] |
- | [[Category: Wang, A H.J]] | + | [[Category: Wang AH-J]] |
- | [[Category: Half-open barrel]]
| + | |
- | [[Category: Protein transport]]
| + | |
- | [[Category: Two helice]]
| + | |
- | [[Category: Ubiquitin fold]]
| + | |
| Structural highlights
Function
SUMO2_HUMAN Ubiquitin-like protein that can be covalently attached to proteins as a monomer or as a lysine-linked polymer. Covalent attachment via an isopeptide bond to its substrates requires prior activation by the E1 complex SAE1-SAE2 and linkage to the E2 enzyme UBE2I, and can be promoted by an E3 ligase such as PIAS1-4, RANBP2 or CBX4. This post-translational modification on lysine residues of proteins plays a crucial role in a number of cellular processes such as nuclear transport, DNA replication and repair, mitosis and signal transduction. Polymeric SUMO2 chains are also susceptible to polyubiquitination which functions as a signal for proteasomal degradation of modified proteins.[1] [2] [3]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
The SUMO proteins are a class of small ubiquitin-like modifiers. SUMO is attached to a specific lysine side chain on the target protein via an isopeptide bond with its C-terminal glycine. There are at least four SUMO proteins in humans, which are involved in protein trafficking and targeting. A truncated human SUMO-2 protein that contains residues 9-93 was expressed in Escherichia coli and crystallized in two different unit cells, with dimensions of a=b=75.25 A, c=29.17 A and a=b=74.96 A, c=33.23 A, both belonging to the rhombohedral space group R3. They diffracted X-rays to 1.6 A and 1.2 A resolution, respectively. The structures were determined by molecular replacement using the yeast SMT3 protein as a search model. Subsequent refinements yielded R/Rfree values of 0.169/0.190 and 0.119/0.185, at 1.6 A and 1.2 A, respectively. The peptide folding of SUMO-2 consists of a half-open beta-barrel and two flanking alpha-helices with secondary structural elements arranged as betabetaalphabetabetaalphabeta in the sequence, identical to those of ubiquitin, SMT3 and SUMO-1. Comparison of SUMO-2 with SUMO-1 showed a surface region near the C terminus with significantly different charge distributions. This may explain their distinct intracellular locations. In addition, crystal-packing analysis suggests a possible trimeric assembly of the SUMO-2 protein, of which the biological significance remains to be determined.
Crystal structures of the human SUMO-2 protein at 1.6 A and 1.2 A resolution: implication on the functional differences of SUMO proteins.,Huang WC, Ko TP, Li SS, Wang AH Eur J Biochem. 2004 Oct;271(20):4114-22. PMID:15479240[4]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Kamitani T, Kito K, Nguyen HP, Fukuda-Kamitani T, Yeh ET. Characterization of a second member of the sentrin family of ubiquitin-like proteins. J Biol Chem. 1998 May 1;273(18):11349-53. PMID:9556629
- ↑ Meulmeester E, Kunze M, Hsiao HH, Urlaub H, Melchior F. Mechanism and consequences for paralog-specific sumoylation of ubiquitin-specific protease 25. Mol Cell. 2008 Jun 6;30(5):610-9. doi: 10.1016/j.molcel.2008.03.021. PMID:18538659 doi:10.1016/j.molcel.2008.03.021
- ↑ Tatham MH, Geoffroy MC, Shen L, Plechanovova A, Hattersley N, Jaffray EG, Palvimo JJ, Hay RT. RNF4 is a poly-SUMO-specific E3 ubiquitin ligase required for arsenic-induced PML degradation. Nat Cell Biol. 2008 May;10(5):538-46. doi: 10.1038/ncb1716. Epub 2008 Apr 13. PMID:18408734 doi:10.1038/ncb1716
- ↑ Huang WC, Ko TP, Li SS, Wang AH. Crystal structures of the human SUMO-2 protein at 1.6 A and 1.2 A resolution: implication on the functional differences of SUMO proteins. Eur J Biochem. 2004 Oct;271(20):4114-22. PMID:15479240 doi:10.1111/j.1432-1033.2004.04349.x
|