2gk6

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 3: Line 3:
<StructureSection load='2gk6' size='340' side='right'caption='[[2gk6]], [[Resolution|resolution]] 2.40&Aring;' scene=''>
<StructureSection load='2gk6' size='340' side='right'caption='[[2gk6]], [[Resolution|resolution]] 2.40&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
-
<table><tr><td colspan='2'>[[2gk6]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2GK6 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2GK6 FirstGlance]. <br>
+
<table><tr><td colspan='2'>[[2gk6]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2GK6 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2GK6 FirstGlance]. <br>
-
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ADP:ADENOSINE-5-DIPHOSPHATE'>ADP</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=PO4:PHOSPHATE+ION'>PO4</scene></td></tr>
+
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.4&#8491;</td></tr>
-
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[2gjk|2gjk]], [[2gk7|2gk7]], [[2gk8|2gk8]]</div></td></tr>
+
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ADP:ADENOSINE-5-DIPHOSPHATE'>ADP</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=PO4:PHOSPHATE+ION'>PO4</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2gk6 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2gk6 OCA], [https://pdbe.org/2gk6 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2gk6 RCSB], [https://www.ebi.ac.uk/pdbsum/2gk6 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2gk6 ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2gk6 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2gk6 OCA], [https://pdbe.org/2gk6 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2gk6 RCSB], [https://www.ebi.ac.uk/pdbsum/2gk6 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2gk6 ProSAT]</span></td></tr>
</table>
</table>
== Function ==
== Function ==
-
[[https://www.uniprot.org/uniprot/RENT1_HUMAN RENT1_HUMAN]] RNA-dependent helicase and ATPase required for nonsense-mediated decay (NMD) of mRNAs containing premature stop codons. Is recruited to mRNAs upon translation termination and undergoes a cycle of phosphorylation and dephosphorylation; its phosphorylation appears to be a key step in NMD. Recruited by release factors to stalled ribosomes together with the SMG1C protein kinase complex to form the transient SURF (SMG1-UPF1-eRF1-eRF3) complex. In EJC-dependent NMD, the SURF complex associates with the exon junction complex (EJC) (located 50-55 or more nucleotides downstream from the termination codon) through UPF2 and allows the formation of an UPF1-UPF2-UPF3 surveillance complex which is believed to activate NMD. Phosphorylated UPF1 is recognized by EST1B/SMG5, SMG6 and SMG7 which are thought to provide a link to the mRNA degradation machinery involving exonucleolytic and endonucleolytic pathways, and to serve as adapters to protein phosphatase 2A (PP2A), thereby triggering UPF1 dephosphorylation and allowing the recycling of NMD factors. UPF1 can also activate NMD without UPF2 or UPF3, and in the absence of the NMD-enhancing downstream EJC indicative for alternative NMD pathways. Plays a role in replication-dependent histone mRNA degradation at the end of phase S; the function is independent of UPF2. For the recognition of premature termination codons (PTC) and initiation of NMD a competitive interaction between UPF1 and PABPC1 with the ribosome-bound release factors is proposed. The ATPase activity of UPF1 is required for disassembly of mRNPs undergoing NMD. Essential for embryonic viability.<ref>PMID:11163187</ref> <ref>PMID:16086026</ref> <ref>PMID:18172165</ref> <ref>PMID:21145460</ref> <ref>PMID:21419344</ref>
+
[https://www.uniprot.org/uniprot/RENT1_HUMAN RENT1_HUMAN] RNA-dependent helicase and ATPase required for nonsense-mediated decay (NMD) of mRNAs containing premature stop codons. Is recruited to mRNAs upon translation termination and undergoes a cycle of phosphorylation and dephosphorylation; its phosphorylation appears to be a key step in NMD. Recruited by release factors to stalled ribosomes together with the SMG1C protein kinase complex to form the transient SURF (SMG1-UPF1-eRF1-eRF3) complex. In EJC-dependent NMD, the SURF complex associates with the exon junction complex (EJC) (located 50-55 or more nucleotides downstream from the termination codon) through UPF2 and allows the formation of an UPF1-UPF2-UPF3 surveillance complex which is believed to activate NMD. Phosphorylated UPF1 is recognized by EST1B/SMG5, SMG6 and SMG7 which are thought to provide a link to the mRNA degradation machinery involving exonucleolytic and endonucleolytic pathways, and to serve as adapters to protein phosphatase 2A (PP2A), thereby triggering UPF1 dephosphorylation and allowing the recycling of NMD factors. UPF1 can also activate NMD without UPF2 or UPF3, and in the absence of the NMD-enhancing downstream EJC indicative for alternative NMD pathways. Plays a role in replication-dependent histone mRNA degradation at the end of phase S; the function is independent of UPF2. For the recognition of premature termination codons (PTC) and initiation of NMD a competitive interaction between UPF1 and PABPC1 with the ribosome-bound release factors is proposed. The ATPase activity of UPF1 is required for disassembly of mRNPs undergoing NMD. Essential for embryonic viability.<ref>PMID:11163187</ref> <ref>PMID:16086026</ref> <ref>PMID:18172165</ref> <ref>PMID:21145460</ref> <ref>PMID:21419344</ref>
== Evolutionary Conservation ==
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
[[Image:Consurf_key_small.gif|200px|right]]
Line 33: Line 33:
__TOC__
__TOC__
</StructureSection>
</StructureSection>
-
[[Category: Human]]
+
[[Category: Homo sapiens]]
[[Category: Large Structures]]
[[Category: Large Structures]]
-
[[Category: Cheng, Z]]
+
[[Category: Cheng Z]]
-
[[Category: Muhlrad, D]]
+
[[Category: Muhlrad D]]
-
[[Category: Parker, R]]
+
[[Category: Parker R]]
-
[[Category: Song, H]]
+
[[Category: Song H]]
-
[[Category: Helicase]]
+
-
[[Category: Hydrolase]]
+
-
[[Category: Nmd]]
+
-
[[Category: Upf1]]
+

Revision as of 08:49, 25 October 2023

Structural and Functional insights into the human Upf1 helicase core

PDB ID 2gk6

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools