| Structural highlights
Function
RNF31_HUMAN E3 ubiquitin-protein ligase component of the LUBAC complex which conjugates linear ('M-1'-linked) polyubiquitin chains to substrates and plays a key role in NF-kappa-B activation and regulation of inflammation. LUBAC conjugates linear polyubiquitin to IKBKG and RIPK1 and is involved in activation of the canonical NF-kappa-B and the JNK signaling pathways. Linear ubiquitination mediated by the LUBAC complex interferes with TNF-induced cell death and thereby prevents inflammation. LUBAC is proposed to be recruited to the TNF-R1 signaling complex (TNF-RSC) following polyubiquitination of TNF-RSC components by BIRC2 and/or BIRC3 and to conjugate linear polyubiquitin to IKBKG and possibly other components contributing to the stability of the complex. Binds polyubiquitin of different linkage types.[1] [2] [3] [4] [5] [6] [7]
Publication Abstract from PubMed
The alpha-helix is one of the most common protein surface recognition motifs found in nature, and its unique amide-cloaking properties also enable alpha-helical polypeptide motifs to exist in membranes. Together, these properties have inspired the development of alpha-helically constrained (Helicon) therapeutics that can enter cells and bind targets that have been considered "undruggable", such as protein-protein interactions. To date, no general method for discovering alpha-helical binders to proteins has been reported, limiting Helicon drug discovery to only those proteins with previously characterized alpha-helix recognition sites, and restricting the starting chemical matter to those known alpha-helical binders. Here, we report a general and rapid screening method to empirically map the alpha-helix binding sites on a broad range of target proteins in parallel using large, unbiased Helicon phage display libraries and next-generation sequencing. We apply this method to screen six structurally diverse protein domains, only one of which had been previously reported to bind isolated alpha-helical peptides, discovering 20 families that collectively comprise several hundred individual Helicons. Analysis of 14 X-ray cocrystal structures reveals at least nine distinct alpha-helix recognition sites across these six proteins, and biochemical and biophysical studies show that these Helicons can block protein-protein interactions, inhibit enzymatic activity, induce conformational rearrangements, and cause protein dimerization. We anticipate that this method will prove broadly useful for the study of protein recognition and for the development of both biochemical tools and therapeutics for traditionally challenging protein targets.
De novo mapping of alpha-helix recognition sites on protein surfaces using unbiased libraries.,Li K, Tokareva OS, Thomson TM, Wahl SCT, Travaline TL, Ramirez JD, Choudary SK, Agarwal S, Walkup WG 4th, Olsen TJ, Brennan MJ, Verdine GL, McGee JH Proc Natl Acad Sci U S A. 2022 Dec 27;119(52):e2210435119. doi: , 10.1073/pnas.2210435119. Epub 2022 Dec 19. PMID:36534810[8]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Kirisako T, Kamei K, Murata S, Kato M, Fukumoto H, Kanie M, Sano S, Tokunaga F, Tanaka K, Iwai K. A ubiquitin ligase complex assembles linear polyubiquitin chains. EMBO J. 2006 Oct 18;25(20):4877-87. Epub 2006 Sep 28. PMID:17006537 doi:10.1038/sj.emboj.7601360
- ↑ Haas TL, Emmerich CH, Gerlach B, Schmukle AC, Cordier SM, Rieser E, Feltham R, Vince J, Warnken U, Wenger T, Koschny R, Komander D, Silke J, Walczak H. Recruitment of the linear ubiquitin chain assembly complex stabilizes the TNF-R1 signaling complex and is required for TNF-mediated gene induction. Mol Cell. 2009 Dec 11;36(5):831-44. doi: 10.1016/j.molcel.2009.10.013. PMID:20005846 doi:10.1016/j.molcel.2009.10.013
- ↑ Tokunaga F, Sakata S, Saeki Y, Satomi Y, Kirisako T, Kamei K, Nakagawa T, Kato M, Murata S, Yamaoka S, Yamamoto M, Akira S, Takao T, Tanaka K, Iwai K. Involvement of linear polyubiquitylation of NEMO in NF-kappaB activation. Nat Cell Biol. 2009 Feb;11(2):123-32. doi: 10.1038/ncb1821. Epub 2009 Jan 11. PMID:19136968 doi:10.1038/ncb1821
- ↑ Gerlach B, Cordier SM, Schmukle AC, Emmerich CH, Rieser E, Haas TL, Webb AI, Rickard JA, Anderton H, Wong WW, Nachbur U, Gangoda L, Warnken U, Purcell AW, Silke J, Walczak H. Linear ubiquitination prevents inflammation and regulates immune signalling. Nature. 2011 Mar 31;471(7340):591-6. doi: 10.1038/nature09816. PMID:21455173 doi:10.1038/nature09816
- ↑ Tokunaga F, Nakagawa T, Nakahara M, Saeki Y, Taniguchi M, Sakata S, Tanaka K, Nakano H, Iwai K. SHARPIN is a component of the NF-kappaB-activating linear ubiquitin chain assembly complex. Nature. 2011 Mar 31;471(7340):633-6. doi: 10.1038/nature09815. PMID:21455180 doi:10.1038/nature09815
- ↑ Ikeda F, Deribe YL, Skanland SS, Stieglitz B, Grabbe C, Franz-Wachtel M, van Wijk SJ, Goswami P, Nagy V, Terzic J, Tokunaga F, Androulidaki A, Nakagawa T, Pasparakis M, Iwai K, Sundberg JP, Schaefer L, Rittinger K, Macek B, Dikic I. SHARPIN forms a linear ubiquitin ligase complex regulating NF-kappaB activity and apoptosis. Nature. 2011 Mar 31;471(7340):637-41. doi: 10.1038/nature09814. PMID:21455181 doi:10.1038/nature09814
- ↑ Smit JJ, Monteferrario D, Noordermeer SM, van Dijk WJ, van der Reijden BA, Sixma TK. The E3 ligase HOIP specifies linear ubiquitin chain assembly through its RING-IBR-RING domain and the unique LDD extension. EMBO J. 2012 Oct 3;31(19):3833-44. doi: 10.1038/emboj.2012.217. Epub 2012 Aug 3. PMID:22863777 doi:10.1038/emboj.2012.217
- ↑ Li K, Tokareva OS, Thomson TM, Wahl SCT, Travaline TL, Ramirez JD, Choudary SK, Agarwal S, Walkup WG 4th, Olsen TJ, Brennan MJ, Verdine GL, McGee JH. De novo mapping of alpha-helix recognition sites on protein surfaces using unbiased libraries. Proc Natl Acad Sci U S A. 2022 Dec 27;119(52):e2210435119. doi: , 10.1073/pnas.2210435119. Epub 2022 Dec 19. PMID:36534810 doi:http://dx.doi.org/10.1073/pnas.2210435119
|