|
|
Line 3: |
Line 3: |
| <StructureSection load='3a3p' size='340' side='right'caption='[[3a3p]], [[Resolution|resolution]] 1.90Å' scene=''> | | <StructureSection load='3a3p' size='340' side='right'caption='[[3a3p]], [[Resolution|resolution]] 1.90Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[3a3p]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/"thermococcus_kodakaraensis"_atomi_et_al._2004 "thermococcus kodakaraensis" atomi et al. 2004]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3A3P OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3A3P FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[3a3p]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Thermococcus_kodakarensis Thermococcus kodakarensis]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3A3P OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3A3P FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.9Å</td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[2z30|2z30]], [[3a3n|3a3n]], [[3a3o|3a3o]]</div></td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> |
| <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3a3p FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3a3p OCA], [https://pdbe.org/3a3p PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3a3p RCSB], [https://www.ebi.ac.uk/pdbsum/3a3p PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3a3p ProSAT]</span></td></tr> | | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3a3p FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3a3p OCA], [https://pdbe.org/3a3p PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3a3p RCSB], [https://www.ebi.ac.uk/pdbsum/3a3p PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3a3p ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[https://www.uniprot.org/uniprot/TKSU_THEKO TKSU_THEKO]] Has a broad substrate specificity with a slight preference to large hydrophobic amino acid residues at the P1 position.
| + | [https://www.uniprot.org/uniprot/TKSU_THEKO TKSU_THEKO] Has a broad substrate specificity with a slight preference to large hydrophobic amino acid residues at the P1 position. |
| == Evolutionary Conservation == | | == Evolutionary Conservation == |
| [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
Line 36: |
Line 36: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Thermococcus kodakaraensis atomi et al. 2004]] | |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Kanaya, S]] | + | [[Category: Thermococcus kodakarensis]] |
- | [[Category: Koga, Y]] | + | [[Category: Kanaya S]] |
- | [[Category: Matsumura, H]] | + | [[Category: Koga Y]] |
- | [[Category: Takano, K]] | + | [[Category: Matsumura H]] |
- | [[Category: Tanaka, S]] | + | [[Category: Takano K]] |
- | [[Category: Hydrolase]]
| + | [[Category: Tanaka S]] |
- | [[Category: Propeptide]]
| + | |
- | [[Category: Protease]]
| + | |
- | [[Category: Secreted]]
| + | |
- | [[Category: Serine protease]]
| + | |
- | [[Category: Subtilisin]]
| + | |
- | [[Category: Thermococcus kodakaraensis]]
| + | |
- | [[Category: Zymogen]]
| + | |
| Structural highlights
Function
TKSU_THEKO Has a broad substrate specificity with a slight preference to large hydrophobic amino acid residues at the P1 position.
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
Tk-subtilisin requires Ca(2+) for folding. This folding is accelerated by the chaperone function of its propeptide (Tkpro). Several Tkpro and Tk-subtilisin derivatives were constructed to examine whether the interactions between the C-terminal extended region of Tkpro and Tk-subtilisin and Glu61/Asp63- and Glu201-mediated hydrogen bonds at the domain interface are important for the chaperone function of Tkpro. The Tkpro derivatives with a series of C-terminal truncations and double mutations at Glu61 and Asp63 exhibited weaker chaperone functions than Tkpro for SA-subtilisin (active-site mutant of Tk-subtilisin). Good correlation was observed between their chaperone functions and binding abilities to the folded SA-subtilisin protein. These results suggest that the C-terminal extended region, Glu61, and Asp63 of Tkpro are not critical for folding of Tk-subtilisin but accelerate it by binding to a folding intermediate of Tk-subtilisin with a native-like structure at their binding sites. In contrast, Tkpro exhibited little chaperone function for E201A/SA-subtilisin. It could bind to the folded E201A/SA-subtilisin protein with a lower association constant than that for SA-subtilisin. These results suggest a loop of Tkpro, which interacts with Glu201 of Tk-subtilisin through hydrogen bonds and is required for folding of Tk-subtilisin by binding to a folding intermediate of Tk-subtilisin with a nonnative structure. Because this loop is fairly hydrophobic and tightly packs to the surface parallel helices of the central alphabetaalpha substructure of Tk-subtilisin, binding of this loop to Glu201 may induce association of these two helices and thereby formation of the alphabetaalpha substructure. We propose that Glu201-mediated interactions are critical for initiation of Tkpro-catalyzed folding of Tk-subtilisin.
Identification of the interactions critical for propeptide-catalyzed folding of Tk-subtilisin.,Tanaka S, Matsumura H, Koga Y, Takano K, Kanaya S J Mol Biol. 2009 Nov 27;394(2):306-19. doi: 10.1016/j.jmb.2009.09.028. Epub 2009 , Sep 18. PMID:19766655[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Tanaka S, Matsumura H, Koga Y, Takano K, Kanaya S. Identification of the interactions critical for propeptide-catalyzed folding of Tk-subtilisin. J Mol Biol. 2009 Nov 27;394(2):306-19. doi: 10.1016/j.jmb.2009.09.028. Epub 2009 , Sep 18. PMID:19766655 doi:http://dx.doi.org/10.1016/j.jmb.2009.09.028
|