|
|
Line 3: |
Line 3: |
| <StructureSection load='3bmv' size='340' side='right'caption='[[3bmv]], [[Resolution|resolution]] 1.60Å' scene=''> | | <StructureSection load='3bmv' size='340' side='right'caption='[[3bmv]], [[Resolution|resolution]] 1.60Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[3bmv]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Atcc_33743 Atcc 33743]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3BMV OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3BMV FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[3bmv]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Thermoanaerobacterium_thermosulfurigenes Thermoanaerobacterium thermosulfurigenes]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3BMV OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3BMV FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.6Å</td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[1a47|1a47]], [[1ciu|1ciu]], [[3bmw|3bmw]]</div></td></tr>
| + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">amyA ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=33950 ATCC 33743])</td></tr> | + | |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[https://en.wikipedia.org/wiki/Cyclomaltodextrin_glucanotransferase Cyclomaltodextrin glucanotransferase], with EC number [https://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.4.1.19 2.4.1.19] </span></td></tr> | + | |
| <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3bmv FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3bmv OCA], [https://pdbe.org/3bmv PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3bmv RCSB], [https://www.ebi.ac.uk/pdbsum/3bmv PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3bmv ProSAT]</span></td></tr> | | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3bmv FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3bmv OCA], [https://pdbe.org/3bmv PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3bmv RCSB], [https://www.ebi.ac.uk/pdbsum/3bmv PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3bmv ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[https://www.uniprot.org/uniprot/CDGT_THETU CDGT_THETU]] Degrades starch to alpha-, beta-, and gamma-cyclodextrins, as well as linear sugars.
| + | [https://www.uniprot.org/uniprot/CDGT_THETU CDGT_THETU] Degrades starch to alpha-, beta-, and gamma-cyclodextrins, as well as linear sugars. |
| == Evolutionary Conservation == | | == Evolutionary Conservation == |
| [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
Line 38: |
Line 36: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Atcc 33743]] | |
- | [[Category: Cyclomaltodextrin glucanotransferase]] | |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Dijkstra, B W]] | + | [[Category: Thermoanaerobacterium thermosulfurigenes]] |
- | [[Category: Oosterwijk, N van]] | + | [[Category: Dijkstra BW]] |
- | [[Category: Rozeboom, H J]] | + | [[Category: Rozeboom HJ]] |
- | [[Category: Acarbose]] | + | [[Category: Van Oosterwijk N]] |
- | [[Category: Family 13 glycosyl hydrola]]
| + | |
- | [[Category: Glycosidase]]
| + | |
- | [[Category: Glycosyltransferase]]
| + | |
- | [[Category: Ligand]]
| + | |
- | [[Category: Metal-binding]]
| + | |
- | [[Category: Secreted]]
| + | |
- | [[Category: Substrate]]
| + | |
- | [[Category: Thermostable]]
| + | |
- | [[Category: Transferase]]
| + | |
| Structural highlights
Function
CDGT_THETU Degrades starch to alpha-, beta-, and gamma-cyclodextrins, as well as linear sugars.
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
Thermoanaerobacterium thermosulfurigenes cyclodextrin glucanotransferase primarily catalyses the formation of cyclic alpha-(1,4)-linked oligosaccharides (cyclodextrins) from starch. This enzyme also possesses unusually high hydrolytic activity as a side reaction, thought to be due to partial retention of ancestral enzyme function. This side reaction is undesirable, since it produces short saccharides that are responsible for the breakdown of the cyclodextrins formed, thus limiting the yield of cyclodextrins produced. To reduce the competing hydrolysis reaction, while maintaining the cyclization activity, we applied directed evolution, introducing random mutations throughout the cgt gene by error-prone PCR. Mutations in two residues, Ser-77 and Trp-239, on the outer region of the active site, lowered the hydrolytic activity up to 15-fold with retention of cyclization activity. In contrast, mutations within the active site could not lower hydrolytic rates, indicating an evolutionary optimized role for cyclodextrin formation by residues within this region. The crystal structure of the most effective mutant, S77P, showed no alterations to the peptide backbone. However, subtle conformational changes to the side chains of active-site residues had occurred, which may explain the increased cyclization/hydrolysis ratio. This indicates that secondary effects of mutations located on the outer regions of the catalytic site are required to lower the rates of competing side reactions, while maintaining the primary catalytic function. Subsequent functional analysis of various glucanotransferases from the superfamily of glycoside hydrolases also suggests a gradual evolutionary progression of these enzymes from a common 'intermediate-like' ancestor towards specific transglycosylation activity.
Elimination of competing hydrolysis and coupling side reactions of a cyclodextrin glucanotransferase by directed evolution.,Kelly RM, Leemhuis H, Rozeboom HJ, van Oosterwijk N, Dijkstra BW, Dijkhuizen L Biochem J. 2008 Aug 1;413(3):517-25. PMID:18422488[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Kelly RM, Leemhuis H, Rozeboom HJ, van Oosterwijk N, Dijkstra BW, Dijkhuizen L. Elimination of competing hydrolysis and coupling side reactions of a cyclodextrin glucanotransferase by directed evolution. Biochem J. 2008 Aug 1;413(3):517-25. PMID:18422488 doi:10.1042/BJ20080353
|