|
|
Line 4: |
Line 4: |
| == Structural highlights == | | == Structural highlights == |
| <table><tr><td colspan='2'>[[3cgo]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3CGO OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3CGO FirstGlance]. <br> | | <table><tr><td colspan='2'>[[3cgo]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3CGO OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3CGO FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=JNO:2-{4-[(4-IMIDAZO[1,2-A]PYRIDIN-3-YLPYRIMIDIN-2-YL)AMINO]PIPERIDIN-1-YL}-N-METHYLACETAMIDE'>JNO</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 3Å</td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[2p33|2p33]], [[3cgf|3cgf]]</div></td></tr>
| + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=JNO:2-{4-[(4-IMIDAZO[1,2-A]PYRIDIN-3-YLPYRIMIDIN-2-YL)AMINO]PIPERIDIN-1-YL}-N-METHYLACETAMIDE'>JNO</scene></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">MAPK10, JNK3, JNK3A, PRKM10 ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 Homo sapiens])</td></tr> | + | |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[https://en.wikipedia.org/wiki/Mitogen-activated_protein_kinase Mitogen-activated protein kinase], with EC number [https://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.11.24 2.7.11.24] </span></td></tr>
| + | |
| <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3cgo FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3cgo OCA], [https://pdbe.org/3cgo PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3cgo RCSB], [https://www.ebi.ac.uk/pdbsum/3cgo PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3cgo ProSAT]</span></td></tr> | | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3cgo FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3cgo OCA], [https://pdbe.org/3cgo PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3cgo RCSB], [https://www.ebi.ac.uk/pdbsum/3cgo PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3cgo ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Disease == | | == Disease == |
- | [[https://www.uniprot.org/uniprot/MK10_HUMAN MK10_HUMAN]] Defects in MAPK10 are a cause of epileptic encephalopathy Lennox-Gastaut type (EELG) [MIM:[https://omim.org/entry/606369 606369]]. Epileptic encephalopathies of the Lennox-Gastaut group are childhood epileptic disorders characterized by severe psychomotor delay and seizures. Note=A chromosomal aberration involving MAPK10 has been found in a single patient. Translocation t(Y;4)(q11.2;q21) which causes MAPK10 truncation.
| + | [https://www.uniprot.org/uniprot/MK10_HUMAN MK10_HUMAN] Defects in MAPK10 are a cause of epileptic encephalopathy Lennox-Gastaut type (EELG) [MIM:[https://omim.org/entry/606369 606369]. Epileptic encephalopathies of the Lennox-Gastaut group are childhood epileptic disorders characterized by severe psychomotor delay and seizures. Note=A chromosomal aberration involving MAPK10 has been found in a single patient. Translocation t(Y;4)(q11.2;q21) which causes MAPK10 truncation. |
| == Function == | | == Function == |
- | [[https://www.uniprot.org/uniprot/MK10_HUMAN MK10_HUMAN]] Serine/threonine-protein kinase involved in various processes such as neuronal proliferation, differentiation, migration and programmed cell death. Extracellular stimuli such as proinflammatory cytokines or physical stress stimulate the stress-activated protein kinase/c-Jun N-terminal kinase (SAP/JNK) signaling pathway. In this cascade, two dual specificity kinases MAP2K4/MKK4 and MAP2K7/MKK7 phosphorylate and activate MAPK10/JNK3. In turn, MAPK10/JNK3 phosphorylates a number of transcription factors, primarily components of AP-1 such as JUN and ATF2 and thus regulates AP-1 transcriptional activity. Plays regulatory roles in the signaling pathways during neuronal apoptosis. Phosphorylates the neuronal microtubule regulator STMN2. Acts in the regulation of the beta-amyloid precursor protein/APP signaling during neuronal differentiation by phosphorylating APP. Participates also in neurite growth in spiral ganglion neurons.<ref>PMID:11718727</ref>
| + | [https://www.uniprot.org/uniprot/MK10_HUMAN MK10_HUMAN] Serine/threonine-protein kinase involved in various processes such as neuronal proliferation, differentiation, migration and programmed cell death. Extracellular stimuli such as proinflammatory cytokines or physical stress stimulate the stress-activated protein kinase/c-Jun N-terminal kinase (SAP/JNK) signaling pathway. In this cascade, two dual specificity kinases MAP2K4/MKK4 and MAP2K7/MKK7 phosphorylate and activate MAPK10/JNK3. In turn, MAPK10/JNK3 phosphorylates a number of transcription factors, primarily components of AP-1 such as JUN and ATF2 and thus regulates AP-1 transcriptional activity. Plays regulatory roles in the signaling pathways during neuronal apoptosis. Phosphorylates the neuronal microtubule regulator STMN2. Acts in the regulation of the beta-amyloid precursor protein/APP signaling during neuronal differentiation by phosphorylating APP. Participates also in neurite growth in spiral ganglion neurons.<ref>PMID:11718727</ref> |
| == Evolutionary Conservation == | | == Evolutionary Conservation == |
| [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
Line 42: |
Line 40: |
| [[Category: Homo sapiens]] | | [[Category: Homo sapiens]] |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Mitogen-activated protein kinase]]
| + | [[Category: Beevers R]] |
- | [[Category: Beevers, R]] | + | [[Category: Ceska TA]] |
- | [[Category: Ceska, T A]] | + | [[Category: Dickson KM]] |
- | [[Category: Dickson, K M]] | + | [[Category: Fortunato M]] |
- | [[Category: Fortunato, M]] | + | [[Category: Platt A]] |
- | [[Category: Platt, A]] | + | |
- | [[Category: Alternative splicing]]
| + | |
- | [[Category: Atp-binding]]
| + | |
- | [[Category: Chromosomal rearrangement]]
| + | |
- | [[Category: Cytoplasm]]
| + | |
- | [[Category: Epilepsy]]
| + | |
- | [[Category: Inhibitor]]
| + | |
- | [[Category: Jnk3 kinase]]
| + | |
- | [[Category: Nucleotide-binding]]
| + | |
- | [[Category: Phosphoprotein]]
| + | |
- | [[Category: Serine/threonine-protein kinase]]
| + | |
- | [[Category: Transferase]]
| + | |
| Structural highlights
Disease
MK10_HUMAN Defects in MAPK10 are a cause of epileptic encephalopathy Lennox-Gastaut type (EELG) [MIM:606369. Epileptic encephalopathies of the Lennox-Gastaut group are childhood epileptic disorders characterized by severe psychomotor delay and seizures. Note=A chromosomal aberration involving MAPK10 has been found in a single patient. Translocation t(Y;4)(q11.2;q21) which causes MAPK10 truncation.
Function
MK10_HUMAN Serine/threonine-protein kinase involved in various processes such as neuronal proliferation, differentiation, migration and programmed cell death. Extracellular stimuli such as proinflammatory cytokines or physical stress stimulate the stress-activated protein kinase/c-Jun N-terminal kinase (SAP/JNK) signaling pathway. In this cascade, two dual specificity kinases MAP2K4/MKK4 and MAP2K7/MKK7 phosphorylate and activate MAPK10/JNK3. In turn, MAPK10/JNK3 phosphorylates a number of transcription factors, primarily components of AP-1 such as JUN and ATF2 and thus regulates AP-1 transcriptional activity. Plays regulatory roles in the signaling pathways during neuronal apoptosis. Phosphorylates the neuronal microtubule regulator STMN2. Acts in the regulation of the beta-amyloid precursor protein/APP signaling during neuronal differentiation by phosphorylating APP. Participates also in neurite growth in spiral ganglion neurons.[1]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
A potent IRAK-4 inhibitor was identified through routine project cross screening. The binding mode was inferred using a combination of in silico docking into an IRAK-4 homology model, surrogate crystal structure analysis and chemical analogue SAR.
IRAK-4 inhibitors. Part II: a structure-based assessment of imidazo[1,2-a]pyridine binding.,Buckley GM, Ceska TA, Fraser JL, Gowers L, Groom CR, Higueruelo AP, Jenkins K, Mack SR, Morgan T, Parry DM, Pitt WR, Rausch O, Richard MD, Sabin V Bioorg Med Chem Lett. 2008 Jun 1;18(11):3291-5. Epub 2008 Apr 22. PMID:18482836[2]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Neidhart S, Antonsson B, Gillieron C, Vilbois F, Grenningloh G, Arkinstall S. c-Jun N-terminal kinase-3 (JNK3)/stress-activated protein kinase-beta (SAPKbeta) binds and phosphorylates the neuronal microtubule regulator SCG10. FEBS Lett. 2001 Nov 16;508(2):259-64. PMID:11718727
- ↑ Buckley GM, Ceska TA, Fraser JL, Gowers L, Groom CR, Higueruelo AP, Jenkins K, Mack SR, Morgan T, Parry DM, Pitt WR, Rausch O, Richard MD, Sabin V. IRAK-4 inhibitors. Part II: a structure-based assessment of imidazo[1,2-a]pyridine binding. Bioorg Med Chem Lett. 2008 Jun 1;18(11):3291-5. Epub 2008 Apr 22. PMID:18482836 doi:10.1016/j.bmcl.2008.04.039
|