|
|
Line 3: |
Line 3: |
| <StructureSection load='3dtk' size='340' side='right'caption='[[3dtk]], [[Resolution|resolution]] 3.24Å' scene=''> | | <StructureSection load='3dtk' size='340' side='right'caption='[[3dtk]], [[Resolution|resolution]] 3.24Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[3dtk]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Dsm_17065 Dsm 17065]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3DTK OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3DTK FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[3dtk]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Deinococcus_deserti Deinococcus deserti]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3DTK OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3DTK FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 3.24Å</td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[3dte|3dte]], [[3dti|3dti]]</div></td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">irrE ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=310783 DSM 17065])</td></tr>
| + | |
| <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3dtk FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3dtk OCA], [https://pdbe.org/3dtk PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3dtk RCSB], [https://www.ebi.ac.uk/pdbsum/3dtk PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3dtk ProSAT]</span></td></tr> | | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3dtk FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3dtk OCA], [https://pdbe.org/3dtk PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3dtk RCSB], [https://www.ebi.ac.uk/pdbsum/3dtk PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3dtk ProSAT]</span></td></tr> |
| </table> | | </table> |
| + | == Function == |
| + | [https://www.uniprot.org/uniprot/IRRE_DEIDV IRRE_DEIDV] Plays a central regulatory role in DNA repair and protection pathways in response to radiation stress. Acts as a site-specific metalloprotease that cleaves and inactivates the repressor proteins DdrOC and DdrOP3, resulting in induced expression of genes required for DNA repair and cell survival after exposure to radiation.<ref>PMID:25170972</ref> |
| == Evolutionary Conservation == | | == Evolutionary Conservation == |
| [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
Line 32: |
Line 33: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Dsm 17065]] | + | [[Category: Deinococcus deserti]] |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Dulermo, R]] | + | [[Category: Dulermo R]] |
- | [[Category: Gorrec, M Le]] | + | [[Category: Le Gorrec M]] |
- | [[Category: Groot, A de]]
| + | [[Category: Serre L]] |
- | [[Category: Serre, L]] | + | [[Category: Servant P]] |
- | [[Category: Servant, P]] | + | [[Category: Sommer S]] |
- | [[Category: Sommer, S]] | + | [[Category: Vannier F]] |
- | [[Category: Vannier, F]] | + | [[Category: Vujicic-Zagar A]] |
- | [[Category: Vujicic-Zagar, A]] | + | [[Category: De Groot A]] |
- | [[Category: Deinococcus]] | + | |
- | [[Category: Gene regulation]]
| + | |
- | [[Category: Irre]]
| + | |
- | [[Category: Metallopeptidase]]
| + | |
- | [[Category: Radiotolerance]]
| + | |
| Structural highlights
Function
IRRE_DEIDV Plays a central regulatory role in DNA repair and protection pathways in response to radiation stress. Acts as a site-specific metalloprotease that cleaves and inactivates the repressor proteins DdrOC and DdrOP3, resulting in induced expression of genes required for DNA repair and cell survival after exposure to radiation.[1]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
Deinococcaceae are famous for their extreme radioresistance. Transcriptome analysis in Deinococcus radiodurans revealed a group of genes up-regulated in response to desiccation and ionizing radiation. IrrE, a novel protein initially found in D. radiodurans, was shown to be a positive regulator of some of these genes. Deinococcus deserti irrE is able to restore radioresistance in a D. radiodurans DeltairrE mutant. The D. deserti IrrE crystal structure reveals a unique combination of three domains: one zinc peptidase-like domain, one helix-turn-helix motif and one GAF-like domain. Mutant analysis indicates that the first and third domains are critical regions for radiotolerance. In particular, mutants affected in the putative zinc-binding site are as sensitive to gamma and UV irradiation as the DeltairrE bacteria, and radioresistance is strongly decreased with the H217L mutation present in the C-terminal domain. In addition, modeling of IrrE-DNA interaction suggests that the observed IrrE structure may not bind double-stranded DNA through its central helix-turn-helix motif and that IrrE is not a classic transcriptional factor that activates gene expression by its direct binding to DNA. We propose that the putative protease activity of IrrE could be a key element of transcription enhancement and that a more classic transcription factor, possibly an IrrE substrate, would link IrrE to transcription of genes specifically involved in radioresistance.
Crystal Structure of the IrrE Protein, a Central Regulator of DNA Damage Repair in Deinococcaceae.,Vujicic-Zagar A, Dulermo R, Le Gorrec M, Vannier F, Servant P, Sommer S, de Groot A, Serre L J Mol Biol. 2009 Jan 3. PMID:19150362[2]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Ludanyi M, Blanchard L, Dulermo R, Brandelet G, Bellanger L, Pignol D, Lemaire D, de Groot A. Radiation response in Deinococcus deserti: IrrE is a metalloprotease that cleaves repressor protein DdrO. Mol Microbiol. 2014 Oct;94(2):434-49. doi: 10.1111/mmi.12774. Epub 2014 Sep 18. PMID:25170972 doi:http://dx.doi.org/10.1111/mmi.12774
- ↑ Vujicic-Zagar A, Dulermo R, Le Gorrec M, Vannier F, Servant P, Sommer S, de Groot A, Serre L. Crystal Structure of the IrrE Protein, a Central Regulator of DNA Damage Repair in Deinococcaceae. J Mol Biol. 2009 Jan 3. PMID:19150362 doi:S0022-2836(08)01597-0
|