|
|
Line 3: |
Line 3: |
| <StructureSection load='3h4i' size='340' side='right'caption='[[3h4i]], [[Resolution|resolution]] 1.30Å' scene=''> | | <StructureSection load='3h4i' size='340' side='right'caption='[[3h4i]], [[Resolution|resolution]] 1.30Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[3h4i]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/"actinoplanes_teichomyceticus"_parenti_et_al._1978 "actinoplanes teichomyceticus" parenti et al. 1978]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3H4I OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3H4I FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[3h4i]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Actinoplanes_teichomyceticus Actinoplanes teichomyceticus] and [https://en.wikipedia.org/wiki/Amycolatopsis_orientalis Amycolatopsis orientalis]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3H4I OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3H4I FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene>, <scene name='pdbligand=U2F:URIDINE-5-DIPHOSPHATE-2-DEOXY-2-FLUORO-ALPHA-D-GLUCOSE'>U2F</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.3Å</td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[3h4t|3h4t]]</div></td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene>, <scene name='pdbligand=U2F:URIDINE-5-DIPHOSPHATE-2-DEOXY-2-FLUORO-ALPHA-D-GLUCOSE'>U2F</scene></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">GtfA ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=1867 "Actinoplanes teichomyceticus" Parenti et al. 1978])</td></tr>
| + | |
| <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3h4i FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3h4i OCA], [https://pdbe.org/3h4i PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3h4i RCSB], [https://www.ebi.ac.uk/pdbsum/3h4i PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3h4i ProSAT]</span></td></tr> | | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3h4i FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3h4i OCA], [https://pdbe.org/3h4i PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3h4i RCSB], [https://www.ebi.ac.uk/pdbsum/3h4i PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3h4i ProSAT]</span></td></tr> |
| </table> | | </table> |
| + | == Function == |
| + | [https://www.uniprot.org/uniprot/GTFA_AMYOR GTFA_AMYOR] Catalyzes the attachment of 4-epi-vancosamine from a TDP donor to the beta-OH-Tyr-6 of the aglycone cosubstrate in the biosynthesis of glycopeptide antibiotic chloroeremomycin, a member of the vancomycin group of antibiotics. Strongly prefers devancoaminyl-vancomycin (DVV) as substrate rather than the heptapeptide vancomycin aglycone (AGV). Acts downstream of GtfB.<ref>PMID:15070728</ref> <ref>PMID:19549605</ref> <ref>PMID:9115410</ref> [https://www.uniprot.org/uniprot/Q6ZZJ7_ACTTI Q6ZZJ7_ACTTI] |
| == Evolutionary Conservation == | | == Evolutionary Conservation == |
| [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
Line 35: |
Line 36: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Actinoplanes teichomyceticus parenti et al. 1978]] | + | [[Category: Actinoplanes teichomyceticus]] |
| + | [[Category: Amycolatopsis orientalis]] |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Blundell, T L]] | + | [[Category: Blundell TL]] |
- | [[Category: Dias, M V.B]] | + | [[Category: Dias MVB]] |
- | [[Category: Huang, F]] | + | [[Category: Huang F]] |
- | [[Category: Spencer, J B]] | + | [[Category: Spencer JB]] |
- | [[Category: Truman, A W]] | + | [[Category: Truman AW]] |
- | [[Category: Wu, S]] | + | [[Category: Wu S]] |
- | [[Category: Antibiotic]]
| + | |
- | [[Category: Chimeric protein]]
| + | |
- | [[Category: Glycosyltransferase]]
| + | |
- | [[Category: Gtfa]]
| + | |
- | [[Category: Teicoplanin]]
| + | |
- | [[Category: Transferase]]
| + | |
- | [[Category: Vancomycin]]
| + | |
| Structural highlights
Function
GTFA_AMYOR Catalyzes the attachment of 4-epi-vancosamine from a TDP donor to the beta-OH-Tyr-6 of the aglycone cosubstrate in the biosynthesis of glycopeptide antibiotic chloroeremomycin, a member of the vancomycin group of antibiotics. Strongly prefers devancoaminyl-vancomycin (DVV) as substrate rather than the heptapeptide vancomycin aglycone (AGV). Acts downstream of GtfB.[1] [2] [3] Q6ZZJ7_ACTTI
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
Glycodiversification, an invaluable tool for generating biochemical diversity, can be catalyzed by glycosyltransferases, which attach activated sugar "donors" onto "acceptor" molecules. However, many glycosyltransferases can tolerate only minor modifications to their native substrates, thus making them unsuitable tools for current glycodiversification strategies. Here we report the production of functional chimeric glycosyltransferases by mixing and matching the N- and C-terminal domains of glycopeptide glycosyltransferases. Using this method we have generated hybrid glycopeptides and have demonstrated that domain swapping can result in a predictable switch of substrate specificity, illustrating that N- and C-terminal domains predominantly dictate acceptor and donor specificity, respectively. The determination of the structure of a chimera in complex with a sugar donor analog shows that almost all sugar-glycosyltransferase binding interactions occur in the C-terminal domain.
Chimeric glycosyltransferases for the generation of hybrid glycopeptides.,Truman AW, Dias MV, Wu S, Blundell TL, Huang F, Spencer JB Chem Biol. 2009 Jun 26;16(6):676-85. PMID:19549605[4]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Lu W, Oberthür M, Leimkuhler C, Tao J, Kahne D, Walsh CT. Characterization of a regiospecific epivancosaminyl transferase GtfA and enzymatic reconstitution of the antibiotic chloroeremomycin. Proc Natl Acad Sci U S A. 2004 Mar 30;101(13):4390-5. PMID:15070728 doi:10.1073/pnas.0400277101
- ↑ Truman AW, Dias MV, Wu S, Blundell TL, Huang F, Spencer JB. Chimeric glycosyltransferases for the generation of hybrid glycopeptides. Chem Biol. 2009 Jun 26;16(6):676-85. PMID:19549605 doi:S1074-5521(09)00178-1
- ↑ Solenberg PJ, Matsushima P, Stack DR, Wilkie SC, Thompson RC, Baltz RH. Production of hybrid glycopeptide antibiotics in vitro and in Streptomyces toyocaensis. Chem Biol. 1997 Mar;4(3):195-202. PMID:9115410 doi:10.1016/s1074-5521(97)90288-x
- ↑ Truman AW, Dias MV, Wu S, Blundell TL, Huang F, Spencer JB. Chimeric glycosyltransferases for the generation of hybrid glycopeptides. Chem Biol. 2009 Jun 26;16(6):676-85. PMID:19549605 doi:S1074-5521(09)00178-1
|