|
|
Line 3: |
Line 3: |
| <StructureSection load='3hqu' size='340' side='right'caption='[[3hqu]], [[Resolution|resolution]] 2.30Å' scene=''> | | <StructureSection load='3hqu' size='340' side='right'caption='[[3hqu]], [[Resolution|resolution]] 2.30Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[3hqu]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3HQU OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3HQU FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[3hqu]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3HQU OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3HQU FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=FE2:FE+(II)+ION'>FE2</scene>, <scene name='pdbligand=UN9:N-[(1-CHLORO-4-HYDROXYISOQUINOLIN-3-YL)CARBONYL]GLYCINE'>UN9</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.3Å</td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[3hqr|3hqr]], [[2g1m|2g1m]]</div></td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=FE2:FE+(II)+ION'>FE2</scene>, <scene name='pdbligand=UN9:N-[(1-CHLORO-4-HYDROXYISOQUINOLIN-3-YL)CARBONYL]GLYCINE'>UN9</scene></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">PHD2(amino acids 181-426) ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr>
| + | |
| <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3hqu FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3hqu OCA], [https://pdbe.org/3hqu PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3hqu RCSB], [https://www.ebi.ac.uk/pdbsum/3hqu PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3hqu ProSAT]</span></td></tr> | | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3hqu FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3hqu OCA], [https://pdbe.org/3hqu PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3hqu RCSB], [https://www.ebi.ac.uk/pdbsum/3hqu PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3hqu ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Disease == | | == Disease == |
- | [[https://www.uniprot.org/uniprot/EGLN1_HUMAN EGLN1_HUMAN]] Defects in EGLN1 are the cause of familial erythrocytosis type 3 (ECYT3) [MIM:[https://omim.org/entry/609820 609820]]. ECYT3 is an autosomal dominant disorder characterized by increased serum red blood cell mass, elevated serum hemoglobin and hematocrit, and normal serum erythropoietin levels.<ref>PMID:16407130</ref> <ref>PMID:17579185</ref>
| + | [https://www.uniprot.org/uniprot/EGLN1_HUMAN EGLN1_HUMAN] Defects in EGLN1 are the cause of familial erythrocytosis type 3 (ECYT3) [MIM:[https://omim.org/entry/609820 609820]. ECYT3 is an autosomal dominant disorder characterized by increased serum red blood cell mass, elevated serum hemoglobin and hematocrit, and normal serum erythropoietin levels.<ref>PMID:16407130</ref> <ref>PMID:17579185</ref> |
| == Function == | | == Function == |
- | [[https://www.uniprot.org/uniprot/EGLN1_HUMAN EGLN1_HUMAN]] Cellular oxygen sensor that catalyzes, under normoxic conditions, the post-translational formation of 4-hydroxyproline in hypoxia-inducible factor (HIF) alpha proteins. Hydroxylates a specific proline found in each of the oxygen-dependent degradation (ODD) domains (N-terminal, NODD, and C-terminal, CODD) of HIF1A. Also hydroxylates HIF2A. Has a preference for the CODD site for both HIF1A and HIF1B. Hydroxylated HIFs are then targeted for proteasomal degradation via the von Hippel-Lindau ubiquitination complex. Under hypoxic conditions, the hydroxylation reaction is attenuated allowing HIFs to escape degradation resulting in their translocation to the nucleus, heterodimerization with HIF1B, and increased expression of hypoxy-inducible genes. EGLN1 is the most important isozyme under normoxia and, through regulating the stability of HIF1, involved in various hypoxia-influenced processes such as angiogenesis in retinal and cardiac functionality.<ref>PMID:11595184</ref> <ref>PMID:12351678</ref> <ref>PMID:15897452</ref> <ref>PMID:19339211</ref> <ref>PMID:21792862</ref> [[https://www.uniprot.org/uniprot/HIF1A_HUMAN HIF1A_HUMAN]] Functions as a master transcriptional regulator of the adaptive response to hypoxia. Under hypoxic conditions, activates the transcription of over 40 genes, including erythropoietin, glucose transporters, glycolytic enzymes, vascular endothelial growth factor, HILPDA, and other genes whose protein products increase oxygen delivery or facilitate metabolic adaptation to hypoxia. Plays an essential role in embryonic vascularization, tumor angiogenesis and pathophysiology of ischemic disease. Binds to core DNA sequence 5'-[AG]CGTG-3' within the hypoxia response element (HRE) of target gene promoters. Activation requires recruitment of transcriptional coactivators such as CREBPB and EP300. Activity is enhanced by interaction with both, NCOA1 or NCOA2. Interaction with redox regulatory protein APEX seems to activate CTAD and potentiates activation by NCOA1 and CREBBP. Involved in the axonal distribution and transport of mitochondria in neurons during hypoxia.<ref>PMID:9887100</ref> <ref>PMID:11566883</ref> <ref>PMID:11292861</ref> <ref>PMID:15465032</ref> <ref>PMID:16543236</ref> <ref>PMID:16973622</ref> <ref>PMID:17610843</ref> <ref>PMID:19528298</ref> <ref>PMID:20624928</ref>
| + | [https://www.uniprot.org/uniprot/EGLN1_HUMAN EGLN1_HUMAN] Cellular oxygen sensor that catalyzes, under normoxic conditions, the post-translational formation of 4-hydroxyproline in hypoxia-inducible factor (HIF) alpha proteins. Hydroxylates a specific proline found in each of the oxygen-dependent degradation (ODD) domains (N-terminal, NODD, and C-terminal, CODD) of HIF1A. Also hydroxylates HIF2A. Has a preference for the CODD site for both HIF1A and HIF1B. Hydroxylated HIFs are then targeted for proteasomal degradation via the von Hippel-Lindau ubiquitination complex. Under hypoxic conditions, the hydroxylation reaction is attenuated allowing HIFs to escape degradation resulting in their translocation to the nucleus, heterodimerization with HIF1B, and increased expression of hypoxy-inducible genes. EGLN1 is the most important isozyme under normoxia and, through regulating the stability of HIF1, involved in various hypoxia-influenced processes such as angiogenesis in retinal and cardiac functionality.<ref>PMID:11595184</ref> <ref>PMID:12351678</ref> <ref>PMID:15897452</ref> <ref>PMID:19339211</ref> <ref>PMID:21792862</ref> |
| == Evolutionary Conservation == | | == Evolutionary Conservation == |
| [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
Line 35: |
Line 34: |
| ==See Also== | | ==See Also== |
| *[[Factor inhibiting HIF|Factor inhibiting HIF]] | | *[[Factor inhibiting HIF|Factor inhibiting HIF]] |
- | *[[Prolyl hydroxylase domain|Prolyl hydroxylase domain]] | + | *[[Polyl hydroxylase domain 3D structures|Polyl hydroxylase domain 3D structures]] |
| == References == | | == References == |
| <references/> | | <references/> |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Human]] | + | [[Category: Homo sapiens]] |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Chowdhury, R]] | + | [[Category: Chowdhury R]] |
- | [[Category: McDonough, M A]] | + | [[Category: McDonough MA]] |
- | [[Category: Schofield, C J]] | + | [[Category: Schofield CJ]] |
- | [[Category: Activator]]
| + | |
- | [[Category: Alternative splicing]]
| + | |
- | [[Category: Congenital erythrocytosis]]
| + | |
- | [[Category: Cytoplasm]]
| + | |
- | [[Category: Dioxygenase]]
| + | |
- | [[Category: Disease mutation]]
| + | |
- | [[Category: Dna-binding]]
| + | |
- | [[Category: Double stranded beta-helix]]
| + | |
- | [[Category: Hydroxylation]]
| + | |
- | [[Category: Iron]]
| + | |
- | [[Category: Isopeptide bond]]
| + | |
- | [[Category: Metal-binding]]
| + | |
- | [[Category: Nucleus]]
| + | |
- | [[Category: Oxidoreductase]]
| + | |
- | [[Category: Oxidoreductase-transcription complex]]
| + | |
- | [[Category: Phosphoprotein]]
| + | |
- | [[Category: Polymorphism]]
| + | |
- | [[Category: S-nitrosylation]]
| + | |
- | [[Category: Transcription]]
| + | |
- | [[Category: Transcription regulation]]
| + | |
- | [[Category: Ubl conjugation]]
| + | |
- | [[Category: Vitamin c]]
| + | |
- | [[Category: Zinc]]
| + | |
- | [[Category: Zinc-finger]]
| + | |
| Structural highlights
Disease
EGLN1_HUMAN Defects in EGLN1 are the cause of familial erythrocytosis type 3 (ECYT3) [MIM:609820. ECYT3 is an autosomal dominant disorder characterized by increased serum red blood cell mass, elevated serum hemoglobin and hematocrit, and normal serum erythropoietin levels.[1] [2]
Function
EGLN1_HUMAN Cellular oxygen sensor that catalyzes, under normoxic conditions, the post-translational formation of 4-hydroxyproline in hypoxia-inducible factor (HIF) alpha proteins. Hydroxylates a specific proline found in each of the oxygen-dependent degradation (ODD) domains (N-terminal, NODD, and C-terminal, CODD) of HIF1A. Also hydroxylates HIF2A. Has a preference for the CODD site for both HIF1A and HIF1B. Hydroxylated HIFs are then targeted for proteasomal degradation via the von Hippel-Lindau ubiquitination complex. Under hypoxic conditions, the hydroxylation reaction is attenuated allowing HIFs to escape degradation resulting in their translocation to the nucleus, heterodimerization with HIF1B, and increased expression of hypoxy-inducible genes. EGLN1 is the most important isozyme under normoxia and, through regulating the stability of HIF1, involved in various hypoxia-influenced processes such as angiogenesis in retinal and cardiac functionality.[3] [4] [5] [6] [7]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
The oxygen-dependent hydroxylation of proline residues in the alpha subunit of hypoxia-inducible transcription factor (HIFalpha) is central to the hypoxic response in animals. Prolyl hydroxylation of HIFalpha increases its binding to the von Hippel-Lindau protein (pVHL), so signaling for degradation via the ubiquitin-proteasome system. The HIF prolyl hydroxylases (PHDs, prolyl hydroxylase domain enzymes) are related to the collagen prolyl hydroxylases, but form unusually stable complexes with their Fe(II) cofactor and 2-oxoglutarate cosubstrate. We report crystal structures of the catalytic domain of PHD2, the most important of the human PHDs, in complex with the C-terminal oxygen-dependent degradation domain of HIF-1alpha. Together with biochemical analyses, the results reveal that PHD catalysis involves a mobile region that isolates the hydroxylation site and stabilizes the PHD2.Fe(II).2OG complex. The results will be of use in the design of PHD inhibitors aimed at treating anemia and ischemic disease.
Structural basis for binding of hypoxia-inducible factor to the oxygen-sensing prolyl hydroxylases.,Chowdhury R, McDonough MA, Mecinovic J, Loenarz C, Flashman E, Hewitson KS, Domene C, Schofield CJ Structure. 2009 Jul 15;17(7):981-9. PMID:19604478[8]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Percy MJ, Zhao Q, Flores A, Harrison C, Lappin TR, Maxwell PH, McMullin MF, Lee FS. A family with erythrocytosis establishes a role for prolyl hydroxylase domain protein 2 in oxygen homeostasis. Proc Natl Acad Sci U S A. 2006 Jan 17;103(3):654-9. Epub 2006 Jan 9. PMID:16407130 doi:0508423103
- ↑ Percy MJ, Furlow PW, Beer PA, Lappin TR, McMullin MF, Lee FS. A novel erythrocytosis-associated PHD2 mutation suggests the location of a HIF binding groove. Blood. 2007 Sep 15;110(6):2193-6. Epub 2007 Jun 19. PMID:17579185 doi:10.1182/blood-2007-04-084434
- ↑ Epstein AC, Gleadle JM, McNeill LA, Hewitson KS, O'Rourke J, Mole DR, Mukherji M, Metzen E, Wilson MI, Dhanda A, Tian YM, Masson N, Hamilton DL, Jaakkola P, Barstead R, Hodgkin J, Maxwell PH, Pugh CW, Schofield CJ, Ratcliffe PJ. C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell. 2001 Oct 5;107(1):43-54. PMID:11595184
- ↑ Ivan M, Haberberger T, Gervasi DC, Michelson KS, Gunzler V, Kondo K, Yang H, Sorokina I, Conaway RC, Conaway JW, Kaelin WG Jr. Biochemical purification and pharmacological inhibition of a mammalian prolyl hydroxylase acting on hypoxia-inducible factor. Proc Natl Acad Sci U S A. 2002 Oct 15;99(21):13459-64. Epub 2002 Sep 26. PMID:12351678 doi:10.1073/pnas.192342099
- ↑ Ozer A, Wu LC, Bruick RK. The candidate tumor suppressor ING4 represses activation of the hypoxia inducible factor (HIF). Proc Natl Acad Sci U S A. 2005 May 24;102(21):7481-6. Epub 2005 May 16. PMID:15897452 doi:0502716102
- ↑ Yasumoto K, Kowata Y, Yoshida A, Torii S, Sogawa K. Role of the intracellular localization of HIF-prolyl hydroxylases. Biochim Biophys Acta. 2009 May;1793(5):792-7. doi: 10.1016/j.bbamcr.2009.01.014. , Epub 2009 Feb 5. PMID:19339211 doi:10.1016/j.bbamcr.2009.01.014
- ↑ Su Y, Loos M, Giese N, Metzen E, Buchler MW, Friess H, Kornberg A, Buchler P. Prolyl hydroxylase-2 (PHD2) exerts tumor-suppressive activity in pancreatic cancer. Cancer. 2012 Feb 15;118(4):960-72. doi: 10.1002/cncr.26344. Epub 2011 Jul 26. PMID:21792862 doi:10.1002/cncr.26344
- ↑ Chowdhury R, McDonough MA, Mecinovic J, Loenarz C, Flashman E, Hewitson KS, Domene C, Schofield CJ. Structural basis for binding of hypoxia-inducible factor to the oxygen-sensing prolyl hydroxylases. Structure. 2009 Jul 15;17(7):981-9. PMID:19604478 doi:S0969-2126(09)00224-X
|