|
|
Line 1: |
Line 1: |
| | | |
| ==Crystal Structure of Human serum albumin complexed with Lidocaine== | | ==Crystal Structure of Human serum albumin complexed with Lidocaine== |
- | <StructureSection load='3jqz' size='340' side='right' caption='[[3jqz]], [[Resolution|resolution]] 3.30Å' scene=''> | + | <StructureSection load='3jqz' size='340' side='right'caption='[[3jqz]], [[Resolution|resolution]] 3.30Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[3jqz]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3JQZ OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3JQZ FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[3jqz]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3JQZ OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3JQZ FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=LQZ:2-(DIETHYLAMINO)-N-(2,6-DIMETHYLPHENYL)ETHANAMIDE'>LQZ</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 3.3Å</td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1ao6|1ao6]], [[1bm0|1bm0]], [[2bxf|2bxf]], [[1e7e|1e7e]], [[2bxc|2bxc]], [[2bxn|2bxn]]</td></tr>
| + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=LQZ:2-(DIETHYLAMINO)-N-(2,6-DIMETHYLPHENYL)ETHANAMIDE'>LQZ</scene></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">ALB, GIG20, GIG42, PRO0903, PRO1708, PRO2044, PRO2619, PRO2675, UNQ696/PRO1341 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3jqz FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3jqz OCA], [https://pdbe.org/3jqz PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3jqz RCSB], [https://www.ebi.ac.uk/pdbsum/3jqz PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3jqz ProSAT]</span></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3jqz FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3jqz OCA], [http://pdbe.org/3jqz PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=3jqz RCSB], [http://www.ebi.ac.uk/pdbsum/3jqz PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=3jqz ProSAT]</span></td></tr> | + | |
| </table> | | </table> |
| == Disease == | | == Disease == |
- | [[http://www.uniprot.org/uniprot/ALBU_HUMAN ALBU_HUMAN]] Defects in ALB are a cause of familial dysalbuminemic hyperthyroxinemia (FDH) [MIM:[http://omim.org/entry/103600 103600]]. FDH is a form of euthyroid hyperthyroxinemia that is due to increased affinity of ALB for T(4). It is the most common cause of inherited euthyroid hyperthyroxinemia in Caucasian population.<ref>PMID:8048949</ref> <ref>PMID:7852505</ref> <ref>PMID:9329347</ref> <ref>PMID:9589637</ref> | + | [https://www.uniprot.org/uniprot/ALBU_HUMAN ALBU_HUMAN] Defects in ALB are a cause of familial dysalbuminemic hyperthyroxinemia (FDH) [MIM:[https://omim.org/entry/103600 103600]. FDH is a form of euthyroid hyperthyroxinemia that is due to increased affinity of ALB for T(4). It is the most common cause of inherited euthyroid hyperthyroxinemia in Caucasian population.<ref>PMID:8048949</ref> <ref>PMID:7852505</ref> <ref>PMID:9329347</ref> <ref>PMID:9589637</ref> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/ALBU_HUMAN ALBU_HUMAN]] Serum albumin, the main protein of plasma, has a good binding capacity for water, Ca(2+), Na(+), K(+), fatty acids, hormones, bilirubin and drugs. Its main function is the regulation of the colloidal osmotic pressure of blood. Major zinc transporter in plasma, typically binds about 80% of all plasma zinc.<ref>PMID:19021548</ref> | + | [https://www.uniprot.org/uniprot/ALBU_HUMAN ALBU_HUMAN] Serum albumin, the main protein of plasma, has a good binding capacity for water, Ca(2+), Na(+), K(+), fatty acids, hormones, bilirubin and drugs. Its main function is the regulation of the colloidal osmotic pressure of blood. Major zinc transporter in plasma, typically binds about 80% of all plasma zinc.<ref>PMID:19021548</ref> |
| == Evolutionary Conservation == | | == Evolutionary Conservation == |
| [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
| Check<jmol> | | Check<jmol> |
| <jmolCheckbox> | | <jmolCheckbox> |
- | <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/jq/3jqz_consurf.spt"</scriptWhenChecked> | + | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/jq/3jqz_consurf.spt"</scriptWhenChecked> |
| <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> |
| <text>to colour the structure by Evolutionary Conservation</text> | | <text>to colour the structure by Evolutionary Conservation</text> |
Line 32: |
Line 31: |
| </div> | | </div> |
| <div class="pdbe-citations 3jqz" style="background-color:#fffaf0;"></div> | | <div class="pdbe-citations 3jqz" style="background-color:#fffaf0;"></div> |
| + | |
| + | ==See Also== |
| + | *[[Albumin 3D structures|Albumin 3D structures]] |
| == References == | | == References == |
| <references/> | | <references/> |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Human]] | + | [[Category: Homo sapiens]] |
- | [[Category: Hein, K L]] | + | [[Category: Large Structures]] |
- | [[Category: Kragh-Hansen, U]] | + | [[Category: Hein KL]] |
- | [[Category: Morth, J P]] | + | [[Category: Kragh-Hansen U]] |
- | [[Category: Nissen, P]] | + | [[Category: Morth JP]] |
- | [[Category: Albumin]]
| + | [[Category: Nissen P]] |
- | [[Category: Alternative splicing]]
| + | |
- | [[Category: Carrier protein]]
| + | |
- | [[Category: Cleavage on pair of basic residue]]
| + | |
- | [[Category: Copper]]
| + | |
- | [[Category: Disease mutation]]
| + | |
- | [[Category: Disulfide bond]]
| + | |
- | [[Category: Drug-binding]]
| + | |
- | [[Category: Glycation]]
| + | |
- | [[Category: Glycoprotein]]
| + | |
- | [[Category: Lidocaine]]
| + | |
- | [[Category: Lipid-binding]]
| + | |
- | [[Category: Metal-binding]]
| + | |
- | [[Category: Phosphoprotein]]
| + | |
- | [[Category: Polymorphism]]
| + | |
- | [[Category: Secreted]]
| + | |
- | [[Category: Transport protein]]
| + | |
| Structural highlights
Disease
ALBU_HUMAN Defects in ALB are a cause of familial dysalbuminemic hyperthyroxinemia (FDH) [MIM:103600. FDH is a form of euthyroid hyperthyroxinemia that is due to increased affinity of ALB for T(4). It is the most common cause of inherited euthyroid hyperthyroxinemia in Caucasian population.[1] [2] [3] [4]
Function
ALBU_HUMAN Serum albumin, the main protein of plasma, has a good binding capacity for water, Ca(2+), Na(+), K(+), fatty acids, hormones, bilirubin and drugs. Its main function is the regulation of the colloidal osmotic pressure of blood. Major zinc transporter in plasma, typically binds about 80% of all plasma zinc.[5]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
Human serum albumin (HSA), the major protein component in blood plasma and in extravascular spaces, is known to participate in the binding and transport of a variety of endogenous and exogenous organic compounds with anionic or electronegative features. We here report on the 3.3A resolution crystal structure of HSA complexed with the cationic, and widely used, anesthetic lidocaine. We find that lidocaine and HSA co-crystallise as a dimer in the unusual space group I4(1). The dimer consists of one HSA molecule without ligand and one HSA molecule with a single, bound lidocaine. HSA is a heart-shaped protein composed of three homologous helical domains (I-III), which can be subdivided into two subdomains (A and B), and lidocaine binds to a unique site formed by residues from subdomain IB facing the central, interdomain crevice. In the crystal, binding seems to introduce only local conformational changes in the protein. According to intrinsic fluorescence experiments with aqueous HSA binding results in widespread conformational changes involving Trp214 in subdomain IIA. Results obtained with equilibrium dialysis and isothermal titration calorimetry show that lidocaine binding is of a low affinity and occurs at one discrete binding site in accordance with the X-ray data. Another crystal form of ligand-free HSA obtained in the presence of ammonium sulphate was determined at 2.3A resolution revealing a sulphate ion accepting cavity at the surface of subdomain IIIA. The present results contribute to a further characterisation of the exceptional binding properties of HSA.
Crystallographic analysis reveals a unique lidocaine binding site on human serum albumin.,Hein KL, Kragh-Hansen U, Morth JP, Jeppesen MD, Otzen D, Moller JV, Nissen P J Struct Biol. 2010 Sep;171(3):353-60. Epub 2010 Mar 27. PMID:20347991[6]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Sunthornthepvarakul T, Angkeow P, Weiss RE, Hayashi Y, Refetoff S. An identical missense mutation in the albumin gene results in familial dysalbuminemic hyperthyroxinemia in 8 unrelated families. Biochem Biophys Res Commun. 1994 Jul 29;202(2):781-7. PMID:8048949
- ↑ Rushbrook JI, Becker E, Schussler GC, Divino CM. Identification of a human serum albumin species associated with familial dysalbuminemic hyperthyroxinemia. J Clin Endocrinol Metab. 1995 Feb;80(2):461-7. PMID:7852505
- ↑ Wada N, Chiba H, Shimizu C, Kijima H, Kubo M, Koike T. A novel missense mutation in codon 218 of the albumin gene in a distinct phenotype of familial dysalbuminemic hyperthyroxinemia in a Japanese kindred. J Clin Endocrinol Metab. 1997 Oct;82(10):3246-50. PMID:9329347
- ↑ Sunthornthepvarakul T, Likitmaskul S, Ngowngarmratana S, Angsusingha K, Kitvitayasak S, Scherberg NH, Refetoff S. Familial dysalbuminemic hypertriiodothyroninemia: a new, dominantly inherited albumin defect. J Clin Endocrinol Metab. 1998 May;83(5):1448-54. PMID:9589637
- ↑ Lu J, Stewart AJ, Sadler PJ, Pinheiro TJ, Blindauer CA. Albumin as a zinc carrier: properties of its high-affinity zinc-binding site. Biochem Soc Trans. 2008 Dec;36(Pt 6):1317-21. doi: 10.1042/BST0361317. PMID:19021548 doi:10.1042/BST0361317
- ↑ Hein KL, Kragh-Hansen U, Morth JP, Jeppesen MD, Otzen D, Moller JV, Nissen P. Crystallographic analysis reveals a unique lidocaine binding site on human serum albumin. J Struct Biol. 2010 Sep;171(3):353-60. Epub 2010 Mar 27. PMID:20347991 doi:10.1016/j.jsb.2010.03.014
|