|
|
| Line 3: |
Line 3: |
| | <StructureSection load='3k2f' size='340' side='right'caption='[[3k2f]], [[Resolution|resolution]] 1.98Å' scene=''> | | <StructureSection load='3k2f' size='340' side='right'caption='[[3k2f]], [[Resolution|resolution]] 1.98Å' scene=''> |
| | == Structural highlights == | | == Structural highlights == |
| - | <table><tr><td colspan='2'>[[3k2f]] is a 1 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3K2F OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3K2F FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[3k2f]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3K2F OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3K2F FirstGlance]. <br> |
| - | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=HG:MERCURY+(II)+ION'>HG</scene>, <scene name='pdbligand=NKX:(2S)-2,3-BIS(NITROOXY)PROPYL+ETHYL[(4S,6S)-6-METHYL-7,7-DIOXIDO-2-SULFAMOYL-5,6-DIHYDRO-4H-THIENO[2,3-B]THIOPYRAN-4-YL]CARBAMATE'>NKX</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.98Å</td></tr> |
| - | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Carbonate_dehydratase Carbonate dehydratase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=4.2.1.1 4.2.1.1] </span></td></tr>
| + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=HG:MERCURY+(II)+ION'>HG</scene>, <scene name='pdbligand=NKX:(2S)-2,3-BIS(NITROOXY)PROPYL+ETHYL[(4S,6S)-6-METHYL-7,7-DIOXIDO-2-SULFAMOYL-5,6-DIHYDRO-4H-THIENO[2,3-B]THIOPYRAN-4-YL]CARBAMATE'>NKX</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> |
| - | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3k2f FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3k2f OCA], [http://pdbe.org/3k2f PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=3k2f RCSB], [http://www.ebi.ac.uk/pdbsum/3k2f PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=3k2f ProSAT]</span></td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3k2f FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3k2f OCA], [https://pdbe.org/3k2f PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3k2f RCSB], [https://www.ebi.ac.uk/pdbsum/3k2f PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3k2f ProSAT]</span></td></tr> |
| | </table> | | </table> |
| | == Disease == | | == Disease == |
| - | [[http://www.uniprot.org/uniprot/CAH2_HUMAN CAH2_HUMAN]] Defects in CA2 are the cause of osteopetrosis autosomal recessive type 3 (OPTB3) [MIM:[http://omim.org/entry/259730 259730]]; also known as osteopetrosis with renal tubular acidosis, carbonic anhydrase II deficiency syndrome, Guibaud-Vainsel syndrome or marble brain disease. Osteopetrosis is a rare genetic disease characterized by abnormally dense bone, due to defective resorption of immature bone. The disorder occurs in two forms: a severe autosomal recessive form occurring in utero, infancy, or childhood, and a benign autosomal dominant form occurring in adolescence or adulthood. Autosomal recessive osteopetrosis is usually associated with normal or elevated amount of non-functional osteoclasts. OPTB3 is associated with renal tubular acidosis, cerebral calcification (marble brain disease) and in some cases with mental retardation.<ref>PMID:1928091</ref> <ref>PMID:1542674</ref> <ref>PMID:8834238</ref> <ref>PMID:9143915</ref> <ref>PMID:15300855</ref> | + | [https://www.uniprot.org/uniprot/CAH2_HUMAN CAH2_HUMAN] Defects in CA2 are the cause of osteopetrosis autosomal recessive type 3 (OPTB3) [MIM:[https://omim.org/entry/259730 259730]; also known as osteopetrosis with renal tubular acidosis, carbonic anhydrase II deficiency syndrome, Guibaud-Vainsel syndrome or marble brain disease. Osteopetrosis is a rare genetic disease characterized by abnormally dense bone, due to defective resorption of immature bone. The disorder occurs in two forms: a severe autosomal recessive form occurring in utero, infancy, or childhood, and a benign autosomal dominant form occurring in adolescence or adulthood. Autosomal recessive osteopetrosis is usually associated with normal or elevated amount of non-functional osteoclasts. OPTB3 is associated with renal tubular acidosis, cerebral calcification (marble brain disease) and in some cases with mental retardation.<ref>PMID:1928091</ref> <ref>PMID:1542674</ref> <ref>PMID:8834238</ref> <ref>PMID:9143915</ref> <ref>PMID:15300855</ref> |
| | == Function == | | == Function == |
| - | [[http://www.uniprot.org/uniprot/CAH2_HUMAN CAH2_HUMAN]] Essential for bone resorption and osteoclast differentiation (By similarity). Reversible hydration of carbon dioxide. Can hydrate cyanamide to urea. Involved in the regulation of fluid secretion into the anterior chamber of the eye.<ref>PMID:10550681</ref> <ref>PMID:11831900</ref> | + | [https://www.uniprot.org/uniprot/CAH2_HUMAN CAH2_HUMAN] Essential for bone resorption and osteoclast differentiation (By similarity). Reversible hydration of carbon dioxide. Can hydrate cyanamide to urea. Involved in the regulation of fluid secretion into the anterior chamber of the eye.<ref>PMID:10550681</ref> <ref>PMID:11831900</ref> |
| | == Evolutionary Conservation == | | == Evolutionary Conservation == |
| | [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
| Line 38: |
Line 38: |
| | __TOC__ | | __TOC__ |
| | </StructureSection> | | </StructureSection> |
| - | [[Category: Carbonate dehydratase]] | + | [[Category: Homo sapiens]] |
| | [[Category: Large Structures]] | | [[Category: Large Structures]] |
| - | [[Category: Cecchi, A]] | + | [[Category: Cecchi A]] |
| - | [[Category: Temperini, C]] | + | [[Category: Temperini C]] |
| - | [[Category: Acetylation]]
| + | |
| - | [[Category: Antiglaucoma drug]]
| + | |
| - | [[Category: Carbonic anhydrase]]
| + | |
| - | [[Category: Cytoplasm]]
| + | |
| - | [[Category: Disease mutation]]
| + | |
| - | [[Category: Lyase]]
| + | |
| - | [[Category: Metal-binding]]
| + | |
| - | [[Category: No-donating agent]]
| + | |
| - | [[Category: Polymorphism]]
| + | |
| - | [[Category: Sulfonamide]]
| + | |
| - | [[Category: Xray crystallography]]
| + | |
| - | [[Category: Zinc]]
| + | |
| Structural highlights
Disease
CAH2_HUMAN Defects in CA2 are the cause of osteopetrosis autosomal recessive type 3 (OPTB3) [MIM:259730; also known as osteopetrosis with renal tubular acidosis, carbonic anhydrase II deficiency syndrome, Guibaud-Vainsel syndrome or marble brain disease. Osteopetrosis is a rare genetic disease characterized by abnormally dense bone, due to defective resorption of immature bone. The disorder occurs in two forms: a severe autosomal recessive form occurring in utero, infancy, or childhood, and a benign autosomal dominant form occurring in adolescence or adulthood. Autosomal recessive osteopetrosis is usually associated with normal or elevated amount of non-functional osteoclasts. OPTB3 is associated with renal tubular acidosis, cerebral calcification (marble brain disease) and in some cases with mental retardation.[1] [2] [3] [4] [5]
Function
CAH2_HUMAN Essential for bone resorption and osteoclast differentiation (By similarity). Reversible hydration of carbon dioxide. Can hydrate cyanamide to urea. Involved in the regulation of fluid secretion into the anterior chamber of the eye.[6] [7]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
Novel bi-functional compounds with a nitric oxide (NO)-releasing moiety bound to a dorzolamide scaffold were investigated. Several compounds were synthesized and their activity as selective carbonic anhydrase inhibitors (CAI) evaluated in vitro on recombinant hCA type I, II and IV enzyme isoforms where they showed different degrees of potency and selectivity to hCA II. A high resolution X-ray crystal structure for the CA II adduct with 8 confirmed the high affinity of this class of compounds for the enzyme. Compounds 4, 6, and 8 showed highly potent and efficacious NO-mediated properties as assessed by their vascular relaxant effect on methoxamine-precontracted rabbit aortic rings. Finally, compounds 4 and 6 exerted potent intraocular pressure (IOP) lowering effects in vivo in normotensive rabbits thereby anticipating their potential for the treatment of hypertensive glaucoma.
Nitric oxide-donating carbonic anhydrase inhibitors for the treatment of open-angle glaucoma.,Steele RM, Benedini F, Biondi S, Borghi V, Carzaniga L, Impagnatiello F, Miglietta D, Chong WK, Rajapakse R, Cecchi A, Temperini C, Supuran CT Bioorg Med Chem Lett. 2009 Dec 1;19(23):6565-70. Epub 2009 Oct 13. PMID:19854054[8]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Venta PJ, Welty RJ, Johnson TM, Sly WS, Tashian RE. Carbonic anhydrase II deficiency syndrome in a Belgian family is caused by a point mutation at an invariant histidine residue (107 His----Tyr): complete structure of the normal human CA II gene. Am J Hum Genet. 1991 Nov;49(5):1082-90. PMID:1928091
- ↑ Roth DE, Venta PJ, Tashian RE, Sly WS. Molecular basis of human carbonic anhydrase II deficiency. Proc Natl Acad Sci U S A. 1992 Mar 1;89(5):1804-8. PMID:1542674
- ↑ Soda H, Yukizane S, Yoshida I, Koga Y, Aramaki S, Kato H. A point mutation in exon 3 (His 107-->Tyr) in two unrelated Japanese patients with carbonic anhydrase II deficiency with central nervous system involvement. Hum Genet. 1996 Apr;97(4):435-7. PMID:8834238
- ↑ Hu PY, Lim EJ, Ciccolella J, Strisciuglio P, Sly WS. Seven novel mutations in carbonic anhydrase II deficiency syndrome identified by SSCP and direct sequencing analysis. Hum Mutat. 1997;9(5):383-7. PMID:9143915 doi:<383::AID-HUMU1>3.0.CO;2-5 10.1002/(SICI)1098-1004(1997)9:5<383::AID-HUMU1>3.0.CO;2-5
- ↑ Shah GN, Bonapace G, Hu PY, Strisciuglio P, Sly WS. Carbonic anhydrase II deficiency syndrome (osteopetrosis with renal tubular acidosis and brain calcification): novel mutations in CA2 identified by direct sequencing expand the opportunity for genotype-phenotype correlation. Hum Mutat. 2004 Sep;24(3):272. PMID:15300855 doi:10.1002/humu.9266
- ↑ Briganti F, Mangani S, Scozzafava A, Vernaglione G, Supuran CT. Carbonic anhydrase catalyzes cyanamide hydration to urea: is it mimicking the physiological reaction? J Biol Inorg Chem. 1999 Oct;4(5):528-36. PMID:10550681
- ↑ Kim CY, Whittington DA, Chang JS, Liao J, May JA, Christianson DW. Structural aspects of isozyme selectivity in the binding of inhibitors to carbonic anhydrases II and IV. J Med Chem. 2002 Feb 14;45(4):888-93. PMID:11831900
- ↑ Steele RM, Benedini F, Biondi S, Borghi V, Carzaniga L, Impagnatiello F, Miglietta D, Chong WK, Rajapakse R, Cecchi A, Temperini C, Supuran CT. Nitric oxide-donating carbonic anhydrase inhibitors for the treatment of open-angle glaucoma. Bioorg Med Chem Lett. 2009 Dec 1;19(23):6565-70. Epub 2009 Oct 13. PMID:19854054 doi:10.1016/j.bmcl.2009.10.036
|