|
|
Line 3: |
Line 3: |
| <StructureSection load='3moo' size='340' side='right'caption='[[3moo]], [[Resolution|resolution]] 1.71Å' scene=''> | | <StructureSection load='3moo' size='340' side='right'caption='[[3moo]], [[Resolution|resolution]] 1.71Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[3moo]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/"bacillus_diphtheriae"_kruse_in_flugge_1886 "bacillus diphtheriae" kruse in flugge 1886]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3MOO OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3MOO FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[3moo]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Corynebacterium_diphtheriae Corynebacterium diphtheriae]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3MOO OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3MOO FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=AZI:AZIDE+ION'>AZI</scene>, <scene name='pdbligand=GLC:ALPHA-D-GLUCOSE'>GLC</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene>, <scene name='pdbligand=VEA:5-OXA-PROTOPORPHYRIN+IX+CONTAINING+FE'>VEA</scene>, <scene name='pdbligand=FRU:FRUCTOSE'>FRU</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.71Å</td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[1iw0|1iw0]], [[1iw1|1iw1]], [[1v8x|1v8x]], [[2zvu|2zvu]], [[1twn|1twn]], [[1twr|1twr]]</div></td></tr>
| + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=AZI:AZIDE+ION'>AZI</scene>, <scene name='pdbligand=FRU:FRUCTOSE'>FRU</scene>, <scene name='pdbligand=GLC:ALPHA-D-GLUCOSE'>GLC</scene>, <scene name='pdbligand=PRD_900003:sucrose'>PRD_900003</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene>, <scene name='pdbligand=VEA:5-OXA-PROTOPORPHYRIN+IX+CONTAINING+FE'>VEA</scene></td></tr> |
| <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3moo FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3moo OCA], [https://pdbe.org/3moo PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3moo RCSB], [https://www.ebi.ac.uk/pdbsum/3moo PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3moo ProSAT]</span></td></tr> | | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3moo FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3moo OCA], [https://pdbe.org/3moo PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3moo RCSB], [https://www.ebi.ac.uk/pdbsum/3moo PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3moo ProSAT]</span></td></tr> |
| </table> | | </table> |
| + | == Function == |
| + | [https://www.uniprot.org/uniprot/Q54AI1_CORDP Q54AI1_CORDP] |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 24: |
Line 26: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Bacillus diphtheriae kruse in flugge 1886]] | + | [[Category: Corynebacterium diphtheriae]] |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Ikeda-Saito, M]] | + | [[Category: Ikeda-Saito M]] |
- | [[Category: Matsui, T]] | + | [[Category: Matsui T]] |
- | [[Category: Omori, K]] | + | [[Category: Omori K]] |
- | [[Category: Unno, M]] | + | [[Category: Unno M]] |
- | [[Category: Absorption spectra]]
| + | |
- | [[Category: Anaerobic chamber]]
| + | |
- | [[Category: Ferrous verdoheme]]
| + | |
- | [[Category: Heme oxygenase]]
| + | |
- | [[Category: Oxidoreductase]]
| + | |
- | [[Category: Reaction intermediate]]
| + | |
- | [[Category: Reaction mechanism]]
| + | |
| Structural highlights
3moo is a 2 chain structure with sequence from Corynebacterium diphtheriae. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
| Method: | X-ray diffraction, Resolution 1.71Å |
Ligands: | , , , , , |
Resources: | FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT |
Function
Q54AI1_CORDP
Publication Abstract from PubMed
The least understood mechanism during heme degradation by the enzyme heme oxygenase (HO) is the third step of ring opening of verdoheme to biliverdin, a process which maintains iron homeostasis. In response to this mechanistic uncertainty, we launched a combined study of X-ray crystallography and theoretical QM/MM calculations, designed to elucidate the mechanism. The air-sensitive ferrous verdoheme complex of HmuO, a heme oxygenase from Corynebacterium diphtheriae, was crystallized under anaerobic conditions. Spectral analysis of the azide-bound verdoheme-HmuO complex crystals assures that the verdoheme group remains intact during the crystallization and X-ray diffraction measurement. The structure offers the first solid evidence for the presence of a water cluster in the distal pocket of this catalytically critical intermediate. The subsequent QM/MM calculations based on this crystal structure explore the reaction mechanisms starting from the FeOOH-verdoheme and FeHOOH-verdoheme complexes, which mimic, respectively, the O(2)- and H(2)O(2)-supported degradations. In both mechanisms, the rate-determining step is the initial O-O bond breaking step, which is either homolytic (for FeHOOH-verdoheme) or coupled to electron and proton transfers (in FeOOH-verdoheme). Additionally, the calculations indicate that the FeHOOH-verdoheme complex is more reactive than the FeOOH-verdoheme complex in accord with experimental findings. QM energies with embedded MM charges are close to and yield the same conclusions as full QM/MM energies. Finally, the calculations highlight the dominant influence of the distal water cluster which acts as a biocatalyst for the conversion of verdoheme to biliverdin in the two processes, by fixing the departing OH and directing it to the requisite site of attack, and by acting as a proton shuttle and a haven for the highly reactive OH(-) nucleophile.
Enzymatic ring-opening mechanism of verdoheme by the heme oxygenase: a combined X-ray crystallography and QM/MM study.,Lai W, Chen H, Matsui T, Omori K, Unno M, Ikeda-Saito M, Shaik S J Am Chem Soc. 2010 Sep 22;132(37):12960-70. PMID:20806922[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Lai W, Chen H, Matsui T, Omori K, Unno M, Ikeda-Saito M, Shaik S. Enzymatic ring-opening mechanism of verdoheme by the heme oxygenase: a combined X-ray crystallography and QM/MM study. J Am Chem Soc. 2010 Sep 22;132(37):12960-70. PMID:20806922 doi:10.1021/ja104674q
|