|
|
Line 3: |
Line 3: |
| <StructureSection load='3se0' size='340' side='right'caption='[[3se0]], [[Resolution|resolution]] 2.62Å' scene=''> | | <StructureSection load='3se0' size='340' side='right'caption='[[3se0]], [[Resolution|resolution]] 2.62Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[3se0]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Pyrococcus_horikoshii Pyrococcus horikoshii]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3SE0 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3SE0 FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[3se0]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Pyrococcus_horikoshii_OT3 Pyrococcus horikoshii OT3]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3SE0 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3SE0 FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ACY:ACETIC+ACID'>ACY</scene>, <scene name='pdbligand=MPD:(4S)-2-METHYL-2,4-PENTANEDIOL'>MPD</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene>, <scene name='pdbligand=TRS:2-AMINO-2-HYDROXYMETHYL-PROPANE-1,3-DIOL'>TRS</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.62Å</td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[1vdz|1vdz]], [[3i72|3i72]], [[3i4l|3i4l]], [[3i73|3i73]]</div></td></tr>
| + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ACY:ACETIC+ACID'>ACY</scene>, <scene name='pdbligand=MPD:(4S)-2-METHYL-2,4-PENTANEDIOL'>MPD</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene>, <scene name='pdbligand=TRS:2-AMINO-2-HYDROXYMETHYL-PROPANE-1,3-DIOL'>TRS</scene></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">atpA, PH1975 ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=70601 Pyrococcus horikoshii])</td></tr>
| + | |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[https://en.wikipedia.org/wiki/H(+)-transporting_two-sector_ATPase H(+)-transporting two-sector ATPase], with EC number [https://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.6.3.14 3.6.3.14] </span></td></tr>
| + | |
| <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3se0 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3se0 OCA], [https://pdbe.org/3se0 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3se0 RCSB], [https://www.ebi.ac.uk/pdbsum/3se0 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3se0 ProSAT]</span></td></tr> | | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3se0 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3se0 OCA], [https://pdbe.org/3se0 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3se0 RCSB], [https://www.ebi.ac.uk/pdbsum/3se0 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3se0 ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[https://www.uniprot.org/uniprot/VATA_PYRHO VATA_PYRHO]] Produces ATP from ADP in the presence of a proton gradient across the membrane. The archaeal alpha chain is a catalytic subunit.
| + | [https://www.uniprot.org/uniprot/VATA_PYRHO VATA_PYRHO] Produces ATP from ADP in the presence of a proton gradient across the membrane. The archaeal alpha chain is a catalytic subunit. |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 29: |
Line 27: |
| </StructureSection> | | </StructureSection> |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Pyrococcus horikoshii]] | + | [[Category: Pyrococcus horikoshii OT3]] |
- | [[Category: Balakrishna, A M]] | + | [[Category: Balakrishna AM]] |
- | [[Category: Gruber, G]] | + | [[Category: Gruber G]] |
- | [[Category: Manimekalai, M S.S]] | + | [[Category: Manimekalai MSS]] |
- | [[Category: Tadwal, V S]] | + | [[Category: Tadwal VS]] |
- | [[Category: A-type atp synthase]]
| + | |
- | [[Category: Adenine-binding pocket]]
| + | |
- | [[Category: Hydrolase]]
| + | |
- | [[Category: Phenylalanine mutant]]
| + | |
| Structural highlights
Function
VATA_PYRHO Produces ATP from ADP in the presence of a proton gradient across the membrane. The archaeal alpha chain is a catalytic subunit.
Publication Abstract from PubMed
A reporter tryptophan residue was individually introduced by site-directed mutagenesis into the adenine-binding pocket of the catalytic subunit A (F427W and F508W mutants) of the motor protein A(1)A(O) ATP synthase from Pyrococcus horikoshii OT3. The crystal structures of the F427W and F508W mutant proteins were determined to 2.5 and 2.6 A resolution, respectively. The tryptophan substitution caused the fluorescence signal to increase by 28% (F427W) and 33% (F508W), with a shift from 333 nm in the wild-type protein to 339 nm in the mutant proteins. Tryptophan emission spectra showed binding of Mg-ATP to the F427W mutant with a K(d) of 8.5 microM. In contrast, no significant binding of nucleotide could be observed for the F508W mutant. A closer inspection of the crystal structure of the F427W mutant showed that the adenine-binding pocket had widened by 0.7 A (to 8.70 A) in comparison to the wild-type subunit A (8.07 A) owing to tryptophan substitution, as a result of which it was able to bind ATP. In contrast, the adenine-binding pocket had narrowed in the F508W mutant. The two mutants presented demonstrate that the exact volume of the adenine ribose binding pocket is essential for nucleotide binding and even minor narrowing makes it unfit for nucleotide binding. In addition, structural and fluorescence data confirmed the viability of the fluorescently active mutant F427W, which had ideal tryptophan spectra for future structure-based time-resolved dynamic measurements of the catalytic subunit A of the ATP-synthesizing enzyme A-ATP synthase.
Engineered tryptophan in the adenine-binding pocket of catalytic subunit A of A-ATP synthase demonstrates the importance of aromatic residues in adenine binding, forming a tool for steady-state and time-resolved fluorescence spectroscopy.,Tadwal VS, Manimekalai MS, Gruber G Acta Crystallogr Sect F Struct Biol Cryst Commun. 2011 Dec 1;67(Pt, 12):1485-91. Epub 2011 Nov 25. PMID:22139149[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Tadwal VS, Manimekalai MS, Gruber G. Engineered tryptophan in the adenine-binding pocket of catalytic subunit A of A-ATP synthase demonstrates the importance of aromatic residues in adenine binding, forming a tool for steady-state and time-resolved fluorescence spectroscopy. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2011 Dec 1;67(Pt, 12):1485-91. Epub 2011 Nov 25. PMID:22139149 doi:10.1107/S1744309111039595
|