|
|
Line 3: |
Line 3: |
| <StructureSection load='5m4c' size='340' side='right'caption='[[5m4c]], [[Resolution|resolution]] 1.94Å' scene=''> | | <StructureSection load='5m4c' size='340' side='right'caption='[[5m4c]], [[Resolution|resolution]] 1.94Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[5m4c]] is a 1 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5M4C OCA]. For a <b>guided tour on the structure components</b> use [http://proteopedia.org/fgij/fg.htm?mol=5M4C FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[5m4c]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5M4C OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=5M4C FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=7EY:3-[5-(4-METHYLPHENYL)THIENO[2,3-D]PYRIMIDIN-4-YL]SULFANYLPROPANOIC+ACID'>7EY</scene>, <scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.935Å</td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[5m44|5m44]]</td></tr>
| + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=7EY:3-[5-(4-METHYLPHENYL)THIENO[2,3-D]PYRIMIDIN-4-YL]SULFANYLPROPANOIC+ACID'>7EY</scene>, <scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene></td></tr> |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Non-specific_serine/threonine_protein_kinase Non-specific serine/threonine protein kinase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.11.1 2.7.11.1] </span></td></tr>
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=5m4c FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5m4c OCA], [https://pdbe.org/5m4c PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=5m4c RCSB], [https://www.ebi.ac.uk/pdbsum/5m4c PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=5m4c ProSAT]</span></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://proteopedia.org/fgij/fg.htm?mol=5m4c FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5m4c OCA], [http://pdbe.org/5m4c PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5m4c RCSB], [http://www.ebi.ac.uk/pdbsum/5m4c PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5m4c ProSAT]</span></td></tr> | + | |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/CSK21_HUMAN CSK21_HUMAN]] Catalytic subunit of a constitutively active serine/threonine-protein kinase complex that phosphorylates a large number of substrates containing acidic residues C-terminal to the phosphorylated serine or threonine. Regulates numerous cellular processes, such as cell cycle progression, apoptosis and transcription, as well as viral infection. May act as a regulatory node which integrates and coordinates numerous signals leading to an appropriate cellular response. During mitosis, functions as a component of the p53/TP53-dependent spindle assembly checkpoint (SAC) that maintains cyclin-B-CDK1 activity and G2 arrest in response to spindle damage. Also required for p53/TP53-mediated apoptosis, phosphorylating 'Ser-392' of p53/TP53 following UV irradiation. Can also negatively regulate apoptosis. Phosphorylates the caspases CASP9 and CASP2 and the apoptotic regulator NOL3. Phosphorylation protects CASP9 from cleavage and activation by CASP8, and inhibits the dimerization of CASP2 and activation of CASP8. Regulates transcription by direct phosphorylation of RNA polymerases I, II, III and IV. Also phosphorylates and regulates numerous transcription factors including NF-kappa-B, STAT1, CREB1, IRF1, IRF2, ATF1, SRF, MAX, JUN, FOS, MYC and MYB. Phosphorylates Hsp90 and its co-chaperones FKBP4 and CDC37, which is essential for chaperone function. Regulates Wnt signaling by phosphorylating CTNNB1 and the transcription factor LEF1. Acts as an ectokinase that phosphorylates several extracellular proteins. During viral infection, phosphorylates various proteins involved in the viral life cycles of EBV, HSV, HBV, HCV, HIV, CMV and HPV.<ref>PMID:11239457</ref> <ref>PMID:11704824</ref> <ref>PMID:16193064</ref> <ref>PMID:19188443</ref> | + | [https://www.uniprot.org/uniprot/CSK21_HUMAN CSK21_HUMAN] Catalytic subunit of a constitutively active serine/threonine-protein kinase complex that phosphorylates a large number of substrates containing acidic residues C-terminal to the phosphorylated serine or threonine. Regulates numerous cellular processes, such as cell cycle progression, apoptosis and transcription, as well as viral infection. May act as a regulatory node which integrates and coordinates numerous signals leading to an appropriate cellular response. During mitosis, functions as a component of the p53/TP53-dependent spindle assembly checkpoint (SAC) that maintains cyclin-B-CDK1 activity and G2 arrest in response to spindle damage. Also required for p53/TP53-mediated apoptosis, phosphorylating 'Ser-392' of p53/TP53 following UV irradiation. Can also negatively regulate apoptosis. Phosphorylates the caspases CASP9 and CASP2 and the apoptotic regulator NOL3. Phosphorylation protects CASP9 from cleavage and activation by CASP8, and inhibits the dimerization of CASP2 and activation of CASP8. Regulates transcription by direct phosphorylation of RNA polymerases I, II, III and IV. Also phosphorylates and regulates numerous transcription factors including NF-kappa-B, STAT1, CREB1, IRF1, IRF2, ATF1, SRF, MAX, JUN, FOS, MYC and MYB. Phosphorylates Hsp90 and its co-chaperones FKBP4 and CDC37, which is essential for chaperone function. Regulates Wnt signaling by phosphorylating CTNNB1 and the transcription factor LEF1. Acts as an ectokinase that phosphorylates several extracellular proteins. During viral infection, phosphorylates various proteins involved in the viral life cycles of EBV, HSV, HBV, HCV, HIV, CMV and HPV.<ref>PMID:11239457</ref> <ref>PMID:11704824</ref> <ref>PMID:16193064</ref> <ref>PMID:19188443</ref> |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 27: |
Line 26: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
| + | [[Category: Homo sapiens]] |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Non-specific serine/threonine protein kinase]]
| + | [[Category: Balanda AO]] |
- | [[Category: Balanda, A O]] | + | [[Category: Bdzhola VG]] |
- | [[Category: Bdzhola, V G]] | + | [[Category: Bischoff N]] |
- | [[Category: Bischoff, N]] | + | [[Category: Golub AG]] |
- | [[Category: Golub, A G]] | + | [[Category: Niefind K]] |
- | [[Category: Niefind, K]] | + | [[Category: Prykhod'ko AO]] |
- | [[Category: Yarmoluk, S M]] | + | [[Category: Yarmoluk SM]] |
- | [[Category: Ko, A O.Prykhod]]
| + | |
- | [[Category: Casein kinase 2]] | + | |
- | [[Category: Protein kinase ck2]]
| + | |
- | [[Category: Transferase]]
| + | |
| Structural highlights
Function
CSK21_HUMAN Catalytic subunit of a constitutively active serine/threonine-protein kinase complex that phosphorylates a large number of substrates containing acidic residues C-terminal to the phosphorylated serine or threonine. Regulates numerous cellular processes, such as cell cycle progression, apoptosis and transcription, as well as viral infection. May act as a regulatory node which integrates and coordinates numerous signals leading to an appropriate cellular response. During mitosis, functions as a component of the p53/TP53-dependent spindle assembly checkpoint (SAC) that maintains cyclin-B-CDK1 activity and G2 arrest in response to spindle damage. Also required for p53/TP53-mediated apoptosis, phosphorylating 'Ser-392' of p53/TP53 following UV irradiation. Can also negatively regulate apoptosis. Phosphorylates the caspases CASP9 and CASP2 and the apoptotic regulator NOL3. Phosphorylation protects CASP9 from cleavage and activation by CASP8, and inhibits the dimerization of CASP2 and activation of CASP8. Regulates transcription by direct phosphorylation of RNA polymerases I, II, III and IV. Also phosphorylates and regulates numerous transcription factors including NF-kappa-B, STAT1, CREB1, IRF1, IRF2, ATF1, SRF, MAX, JUN, FOS, MYC and MYB. Phosphorylates Hsp90 and its co-chaperones FKBP4 and CDC37, which is essential for chaperone function. Regulates Wnt signaling by phosphorylating CTNNB1 and the transcription factor LEF1. Acts as an ectokinase that phosphorylates several extracellular proteins. During viral infection, phosphorylates various proteins involved in the viral life cycles of EBV, HSV, HBV, HCV, HIV, CMV and HPV.[1] [2] [3] [4]
Publication Abstract from PubMed
Protein kinase CK2 is associated with a number of human diseases, among them cancer, and is therefore a target for inhibitor development in industry and academia. Six crystal structures of either CK2alpha, the catalytic subunit of human protein kinase CK2, or its paralog CK2alpha' in complex with two ATP-competitive inhibitors-based on either a flavonol or a thieno[2,3-d]pyrimidine framework-are presented. The structures show examples for extreme structural deformations of the ATP-binding loop and its neighbourhood and of the hinge/helix alphaD region, i.e., of two zones of the broader ATP site environment. Thus, they supplement our picture of the conformational space available for CK2alpha and CK2alpha'. Further, they document the potential of synthetic ligands to trap unusual conformations of the enzymes and allow to envision a new generation of inhibitors that stabilize such conformations.
Structural Hypervariability of the Two Human Protein Kinase CK2 Catalytic Subunit Paralogs Revealed by Complex Structures with a Flavonol- and a Thieno[2,3-d]pyrimidine-Based Inhibitor.,Niefind K, Bischoff N, Golub AG, Bdzhola VG, Balanda AO, Prykhod'ko AO, Yarmoluk SM Pharmaceuticals (Basel). 2017 Jan 11;10(1). pii: E9. doi: 10.3390/ph10010009. PMID:28085026[5]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Keller DM, Zeng X, Wang Y, Zhang QH, Kapoor M, Shu H, Goodman R, Lozano G, Zhao Y, Lu H. A DNA damage-induced p53 serine 392 kinase complex contains CK2, hSpt16, and SSRP1. Mol Cell. 2001 Feb;7(2):283-92. PMID:11239457
- ↑ Sayed M, Pelech S, Wong C, Marotta A, Salh B. Protein kinase CK2 is involved in G2 arrest and apoptosis following spindle damage in epithelial cells. Oncogene. 2001 Oct 25;20(48):6994-7005. PMID:11704824 doi:10.1038/sj.onc.1204894
- ↑ Shin S, Lee Y, Kim W, Ko H, Choi H, Kim K. Caspase-2 primes cancer cells for TRAIL-mediated apoptosis by processing procaspase-8. EMBO J. 2005 Oct 19;24(20):3532-42. Epub 2005 Sep 29. PMID:16193064 doi:10.1038/sj.emboj.7600827
- ↑ St-Denis NA, Derksen DR, Litchfield DW. Evidence for regulation of mitotic progression through temporal phosphorylation and dephosphorylation of CK2alpha. Mol Cell Biol. 2009 Apr;29(8):2068-81. doi: 10.1128/MCB.01563-08. Epub 2009 Feb, 2. PMID:19188443 doi:10.1128/MCB.01563-08
- ↑ Niefind K, Bischoff N, Golub AG, Bdzhola VG, Balanda AO, Prykhod'ko AO, Yarmoluk SM. Structural Hypervariability of the Two Human Protein Kinase CK2 Catalytic Subunit Paralogs Revealed by Complex Structures with a Flavonol- and a Thieno[2,3-d]pyrimidine-Based Inhibitor. Pharmaceuticals (Basel). 2017 Jan 11;10(1). pii: E9. doi: 10.3390/ph10010009. PMID:28085026 doi:http://dx.doi.org/10.3390/ph10010009
|