|
|
| Line 3: |
Line 3: |
| | <StructureSection load='5mex' size='340' side='right'caption='[[5mex]], [[Resolution|resolution]] 1.92Å' scene=''> | | <StructureSection load='5mex' size='340' side='right'caption='[[5mex]], [[Resolution|resolution]] 1.92Å' scene=''> |
| | == Structural highlights == | | == Structural highlights == |
| - | <table><tr><td colspan='2'>[[5mex]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Arath Arath]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5MEX OCA]. For a <b>guided tour on the structure components</b> use [http://proteopedia.org/fgij/fg.htm?mol=5MEX FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[5mex]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Arabidopsis_thaliana Arabidopsis thaliana]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5MEX OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=5MEX FirstGlance]. <br> |
| - | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=BU2:1,3-BUTANEDIOL'>BU2</scene>, <scene name='pdbligand=EDO:1,2-ETHANEDIOL'>EDO</scene>, <scene name='pdbligand=PAP:3-PHOSPHATE-ADENOSINE-5-DIPHOSPHATE'>PAP</scene>, <scene name='pdbligand=SZZ:Sinigrin'>SZZ</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.92Å</td></tr> |
| - | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">SOT18, ST5B, At1g74090, F2P9.4 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=3702 ARATH])</td></tr>
| + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=BU2:1,3-BUTANEDIOL'>BU2</scene>, <scene name='pdbligand=EDO:1,2-ETHANEDIOL'>EDO</scene>, <scene name='pdbligand=PAP:3-PHOSPHATE-ADENOSINE-5-DIPHOSPHATE'>PAP</scene>, <scene name='pdbligand=SZZ:Sinigrin'>SZZ</scene></td></tr> |
| - | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://proteopedia.org/fgij/fg.htm?mol=5mex FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5mex OCA], [http://pdbe.org/5mex PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5mex RCSB], [http://www.ebi.ac.uk/pdbsum/5mex PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5mex ProSAT]</span></td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=5mex FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5mex OCA], [https://pdbe.org/5mex PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=5mex RCSB], [https://www.ebi.ac.uk/pdbsum/5mex PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=5mex ProSAT]</span></td></tr> |
| | </table> | | </table> |
| | == Function == | | == Function == |
| - | [[http://www.uniprot.org/uniprot/SOT18_ARATH SOT18_ARATH]] Sulfotransferase that utilizes 3'-phospho-5'-adenylyl sulfate (PAPS) as sulfonate donor to catalyze the sulfate conjugation of desulfo-glucosinolates (dsGSs), the final step in the biosynthesis of the glucosinolate core structure. Preferred substrate are the long-chain desulfo-glucosinolates, 7-methylthioheptyl and 8-methylthiooctyl, derived from methionine. Substrate preference is desulfo-benzyl glucosinolate > desulfo-4-methylthiobutyl glucosinolate > desulfo-6-methylthiohexyl glucosinolate > desulfo-3-methylthiopropyl glucosinolate > desulfo-indol-3-yl methyl glucosinolate > desulfo-singrin > desulfo-3-butenyl glucosinolate.<ref>PMID:15358770</ref> <ref>PMID:15866872</ref> <ref>PMID:16367753</ref> <ref>PMID:19077143</ref> <ref>PMID:21281472</ref> | + | [https://www.uniprot.org/uniprot/SOT18_ARATH SOT18_ARATH] Sulfotransferase that utilizes 3'-phospho-5'-adenylyl sulfate (PAPS) as sulfonate donor to catalyze the sulfate conjugation of desulfo-glucosinolates (dsGSs), the final step in the biosynthesis of the glucosinolate core structure. Preferred substrate are the long-chain desulfo-glucosinolates, 7-methylthioheptyl and 8-methylthiooctyl, derived from methionine. Substrate preference is desulfo-benzyl glucosinolate > desulfo-4-methylthiobutyl glucosinolate > desulfo-6-methylthiohexyl glucosinolate > desulfo-3-methylthiopropyl glucosinolate > desulfo-indol-3-yl methyl glucosinolate > desulfo-singrin > desulfo-3-butenyl glucosinolate.<ref>PMID:15358770</ref> <ref>PMID:15866872</ref> <ref>PMID:16367753</ref> <ref>PMID:19077143</ref> <ref>PMID:21281472</ref> |
| | <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| | == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
| Line 21: |
Line 21: |
| | | | |
| | ==See Also== | | ==See Also== |
| - | *[[Sulfotransferase|Sulfotransferase]] | + | *[[Sulfotransferase 3D structures|Sulfotransferase 3D structures]] |
| | == References == | | == References == |
| | <references/> | | <references/> |
| | __TOC__ | | __TOC__ |
| | </StructureSection> | | </StructureSection> |
| - | [[Category: Arath]] | + | [[Category: Arabidopsis thaliana]] |
| | [[Category: Large Structures]] | | [[Category: Large Structures]] |
| - | [[Category: Baruch, P]] | + | [[Category: Baruch P]] |
| - | [[Category: Chizhov, I]] | + | [[Category: Chizhov I]] |
| - | [[Category: Fedorov, R]] | + | [[Category: Fedorov R]] |
| - | [[Category: Hirschmann, F]] | + | [[Category: Hirschmann F]] |
| - | [[Category: Krause, F]] | + | [[Category: Krause F]] |
| - | [[Category: Manstein, D J]] | + | [[Category: Manstein DJ]] |
| - | [[Category: Mueller, J W]] | + | [[Category: Mueller JW]] |
| - | [[Category: Papenbrock, J]] | + | [[Category: Papenbrock J]] |
| - | [[Category: Catalysis]]
| + | |
| - | [[Category: Glucosinolate-biosynthesis]]
| + | |
| - | [[Category: Sulphotransferase]]
| + | |
| - | [[Category: Transferase]]
| + | |
| Structural highlights
Function
SOT18_ARATH Sulfotransferase that utilizes 3'-phospho-5'-adenylyl sulfate (PAPS) as sulfonate donor to catalyze the sulfate conjugation of desulfo-glucosinolates (dsGSs), the final step in the biosynthesis of the glucosinolate core structure. Preferred substrate are the long-chain desulfo-glucosinolates, 7-methylthioheptyl and 8-methylthiooctyl, derived from methionine. Substrate preference is desulfo-benzyl glucosinolate > desulfo-4-methylthiobutyl glucosinolate > desulfo-6-methylthiohexyl glucosinolate > desulfo-3-methylthiopropyl glucosinolate > desulfo-indol-3-yl methyl glucosinolate > desulfo-singrin > desulfo-3-butenyl glucosinolate.[1] [2] [3] [4] [5]
Publication Abstract from PubMed
Sulphotransferases are a diverse group of enzymes catalysing the transfer of a sulfuryl group from 3'-phosphoadenosine 5'-phosphosulphate (PAPS) to a broad range of secondary metabolites. They exist in all kingdoms of life. In Arabidopsis thaliana (L.) Heynh. twenty-two sulphotransferase (SOT) isoforms were identified. Three of those are involved in glucosinolate (Gl) biosynthesis, glycosylated sulphur-containing aldoximes containing chemically different side chains, whose break-down products are involved in stress response against herbivores, pathogens, and abiotic stress. To explain the differences in substrate specificity of desulpho (ds)-Gl SOTs and to understand the reaction mechanism of plant SOTs, we determined the first high-resolution crystal structure of the plant ds-Gl SOT AtSOT18 in complex with 3'-phosphoadenosine 5'-phosphate (PAP) alone and together with the Gl sinigrin. These new structural insights into the determination of substrate specificity were complemented by mutagenesis studies. The structure of AtSOT18 invigorates the similarity between plant and mammalian sulphotransferases, which illustrates the evolutionary conservation of this multifunctional enzyme family. We identified the essential residues for substrate binding and catalysis and demonstrated that the catalytic mechanism is conserved between human and plant enzymes. Our study indicates that the loop-gating mechanism is likely to be a source of the substrate specificity in plants.
Structural and biochemical studies of sulphotransferase 18 from Arabidopsis thaliana explain its substrate specificity and reaction mechanism.,Hirschmann F, Krause F, Baruch P, Chizhov I, Mueller JW, Manstein DJ, Papenbrock J, Fedorov R Sci Rep. 2017 Jun 23;7(1):4160. doi: 10.1038/s41598-017-04539-2. PMID:28646214[6]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Piotrowski M, Schemenewitz A, Lopukhina A, Muller A, Janowitz T, Weiler EW, Oecking C. Desulfoglucosinolate sulfotransferases from Arabidopsis thaliana catalyze the final step in the biosynthesis of the glucosinolate core structure. J Biol Chem. 2004 Dec 3;279(49):50717-25. Epub 2004 Sep 9. PMID:15358770 doi:http://dx.doi.org/10.1074/jbc.M407681200
- ↑ Hirai MY, Klein M, Fujikawa Y, Yano M, Goodenowe DB, Yamazaki Y, Kanaya S, Nakamura Y, Kitayama M, Suzuki H, Sakurai N, Shibata D, Tokuhisa J, Reichelt M, Gershenzon J, Papenbrock J, Saito K. Elucidation of gene-to-gene and metabolite-to-gene networks in arabidopsis by integration of metabolomics and transcriptomics. J Biol Chem. 2005 Jul 8;280(27):25590-5. Epub 2005 May 2. PMID:15866872 doi:http://dx.doi.org/M502332200
- ↑ Klein M, Reichelt M, Gershenzon J, Papenbrock J. The three desulfoglucosinolate sulfotransferase proteins in Arabidopsis have different substrate specificities and are differentially expressed. FEBS J. 2006 Jan;273(1):122-36. PMID:16367753 doi:http://dx.doi.org/10.1111/j.1742-4658.2005.05048.x
- ↑ Klein M, Papenbrock J. Kinetics and substrate specificities of desulfo-glucosinolate sulfotransferases in Arabidopsis thaliana. Physiol Plant. 2009 Feb;135(2):140-9. doi: 10.1111/j.1399-3054.2008.01182.x. Epub, 2008 Dec 5. PMID:19077143 doi:http://dx.doi.org/10.1111/j.1399-3054.2008.01182.x
- ↑ Moldrup ME, Geu-Flores F, Olsen CE, Halkier BA. Modulation of sulfur metabolism enables efficient glucosinolate engineering. BMC Biotechnol. 2011 Jan 31;11:12. doi: 10.1186/1472-6750-11-12. PMID:21281472 doi:http://dx.doi.org/10.1186/1472-6750-11-12
- ↑ Hirschmann F, Krause F, Baruch P, Chizhov I, Mueller JW, Manstein DJ, Papenbrock J, Fedorov R. Structural and biochemical studies of sulphotransferase 18 from Arabidopsis thaliana explain its substrate specificity and reaction mechanism. Sci Rep. 2017 Jun 23;7(1):4160. doi: 10.1038/s41598-017-04539-2. PMID:28646214 doi:http://dx.doi.org/10.1038/s41598-017-04539-2
|