|
|
Line 3: |
Line 3: |
| <StructureSection load='3wa9' size='340' side='right'caption='[[3wa9]], [[Resolution|resolution]] 3.07Å' scene=''> | | <StructureSection load='3wa9' size='340' side='right'caption='[[3wa9]], [[Resolution|resolution]] 3.07Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[3wa9]] is a 10 chain structure with sequence from [https://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3WA9 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3WA9 FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[3wa9]] is a 10 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3WA9 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3WA9 FirstGlance]. <br> |
- | </td></tr><tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[3waa|3waa]]</div></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 3.07Å</td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">H3.1 ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN]), H4 ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN]), H2A.Z.1 ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN]), H2B ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr>
| + | |
| <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3wa9 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3wa9 OCA], [https://pdbe.org/3wa9 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3wa9 RCSB], [https://www.ebi.ac.uk/pdbsum/3wa9 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3wa9 ProSAT]</span></td></tr> | | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3wa9 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3wa9 OCA], [https://pdbe.org/3wa9 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3wa9 RCSB], [https://www.ebi.ac.uk/pdbsum/3wa9 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3wa9 ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[https://www.uniprot.org/uniprot/H2B1J_HUMAN H2B1J_HUMAN]] Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.<ref>PMID:11859126</ref> <ref>PMID:12860195</ref> <ref>PMID:15019208</ref> Has broad antibacterial activity. May contribute to the formation of the functional antimicrobial barrier of the colonic epithelium, and to the bactericidal activity of amniotic fluid.<ref>PMID:11859126</ref> <ref>PMID:12860195</ref> <ref>PMID:15019208</ref> [[https://www.uniprot.org/uniprot/H2AZ_HUMAN H2AZ_HUMAN]] Variant histone H2A which replaces conventional H2A in a subset of nucleosomes. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. May be involved in the formation of constitutive heterochromatin. May be required for chromosome segregation during cell division.<ref>PMID:15878876</ref>
| + | [https://www.uniprot.org/uniprot/H31_HUMAN H31_HUMAN] |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 26: |
Line 25: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Human]] | + | [[Category: Homo sapiens]] |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Arimura, Y]] | + | [[Category: Arimura Y]] |
- | [[Category: Harata, M]] | + | [[Category: Harata M]] |
- | [[Category: Horikoshi, N]] | + | [[Category: Horikoshi N]] |
- | [[Category: Iwasaki, W]] | + | [[Category: Iwasaki W]] |
- | [[Category: Kagawa, W]] | + | [[Category: Kagawa W]] |
- | [[Category: Kimura, H]] | + | [[Category: Kimura H]] |
- | [[Category: Kurumizaka, H]] | + | [[Category: Kurumizaka H]] |
- | [[Category: Osakabe, A]] | + | [[Category: Osakabe A]] |
- | [[Category: Sato, K]] | + | [[Category: Sato K]] |
- | [[Category: Shimada, K]] | + | [[Category: Shimada K]] |
- | [[Category: Tachiwana, H]] | + | [[Category: Tachiwana H]] |
- | [[Category: Chromatin formation]]
| + | |
- | [[Category: Dna binding]]
| + | |
- | [[Category: Histone fold]]
| + | |
- | [[Category: Nucleus]]
| + | |
- | [[Category: Structural protein-dna complex]]
| + | |
| Structural highlights
Function
H31_HUMAN
Publication Abstract from PubMed
The histone H2A.Z variant is widely conserved among eukaryotes. Two isoforms, H2A.Z.1 and H2A.Z.2, have been identified in vertebrates and may have distinct functions in cell growth and gene expression. However, no structural differences between H2A.Z.1 and H2A.Z.2 have been reported. In the present study, the crystal structures of nucleosomes containing human H2A.Z.1 and H2A.Z.2 were determined. The structures of the L1 loop regions were found to clearly differ between H2A.Z.1 and H2A.Z.2, although their amino-acid sequences in this region are identical. This structural polymorphism may have been induced by a substitution that evolutionally occurred at the position of amino acid 38 and by the flexible nature of the L1 loops of H2A.Z.1 and H2A.Z.2. It was also found that in living cells nucleosomal H2A.Z.1 exchanges more rapidly than H2A.Z.2. A mutational analysis revealed that the amino-acid difference at position 38 is at least partially responsible for the distinctive dynamics of H2A.Z.1 and H2A.Z.2. These findings provide important new information for understanding the differences in the regulation and functions of H2A.Z.1 and H2A.Z.2 in cells.
Structural polymorphism in the L1 loop regions of human H2A.Z.1 and H2A.Z.2.,Horikoshi N, Sato K, Shimada K, Arimura Y, Osakabe A, Tachiwana H, Hayashi-Takanaka Y, Iwasaki W, Kagawa W, Harata M, Kimura H, Kurumizaka H Acta Crystallogr D Biol Crystallogr. 2013 Dec;69(Pt 12):2431-9. doi:, 10.1107/S090744491302252X. Epub 2013 Nov 19. PMID:24311584[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Horikoshi N, Sato K, Shimada K, Arimura Y, Osakabe A, Tachiwana H, Hayashi-Takanaka Y, Iwasaki W, Kagawa W, Harata M, Kimura H, Kurumizaka H. Structural polymorphism in the L1 loop regions of human H2A.Z.1 and H2A.Z.2. Acta Crystallogr D Biol Crystallogr. 2013 Dec;69(Pt 12):2431-9. doi:, 10.1107/S090744491302252X. Epub 2013 Nov 19. PMID:24311584 doi:http://dx.doi.org/10.1107/S090744491302252X
|