|
|
Line 1: |
Line 1: |
| | | |
| ==Structure of the Phosphatase Domain of the Cell Fate Determinant SpoIIE from Bacillus subtilis in a crystal form without domain swapping== | | ==Structure of the Phosphatase Domain of the Cell Fate Determinant SpoIIE from Bacillus subtilis in a crystal form without domain swapping== |
- | <StructureSection load='5mqh' size='340' side='right' caption='[[5mqh]], [[Resolution|resolution]] 2.45Å' scene=''> | + | <StructureSection load='5mqh' size='340' side='right'caption='[[5mqh]], [[Resolution|resolution]] 2.45Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[5mqh]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/"vibrio_subtilis"_ehrenberg_1835 "vibrio subtilis" ehrenberg 1835]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5MQH OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5MQH FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[5mqh]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Bacillus_subtilis Bacillus subtilis]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5MQH OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=5MQH FirstGlance]. <br> |
- | </td></tr><tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[3t91|3t91]], [[3t9q|3t9q]]</td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.45Å</td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">SC09_Contig28orf00413 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=1423 "Vibrio subtilis" Ehrenberg 1835])</td></tr>
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=5mqh FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5mqh OCA], [https://pdbe.org/5mqh PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=5mqh RCSB], [https://www.ebi.ac.uk/pdbsum/5mqh PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=5mqh ProSAT]</span></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5mqh FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5mqh OCA], [http://pdbe.org/5mqh PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5mqh RCSB], [http://www.ebi.ac.uk/pdbsum/5mqh PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5mqh ProSAT]</span></td></tr> | + | |
| </table> | | </table> |
| + | == Function == |
| + | [https://www.uniprot.org/uniprot/SP2E_BACSU SP2E_BACSU] Normally needed for pro-sigma E processing during sporulation but can be bypassed in vegetative cells. Activates SpoIIAA by dephosphorylation. |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 21: |
Line 22: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Vibrio subtilis ehrenberg 1835]] | + | [[Category: Bacillus subtilis]] |
- | [[Category: Blagova, E V]] | + | [[Category: Large Structures]] |
- | [[Category: Levdikov, V M]] | + | [[Category: Blagova EV]] |
- | [[Category: Wilkinson, A J]] | + | [[Category: Levdikov VM]] |
- | [[Category: Manganese]] | + | [[Category: Wilkinson AJ]] |
- | [[Category: Phosphatase]]
| + | |
- | [[Category: Pp2c]]
| + | |
- | [[Category: Sporulation]]
| + | |
- | [[Category: Transferase]]
| + | |
| Structural highlights
Function
SP2E_BACSU Normally needed for pro-sigma E processing during sporulation but can be bypassed in vegetative cells. Activates SpoIIAA by dephosphorylation.
Publication Abstract from PubMed
PP2C phosphatases control biological processes including stress responses, development, and cell division in all kingdoms of life. Diverse regulatory domains adapt PP2C phosphatases to specific functions, but how these domains control phosphatase activity was unknown. We present structures representing active and inactive states of the PP2C phosphatase SpoIIE from Bacillus subtilis. Based on structural analyses and genetic and biochemical experiments, we identify an alpha-helical switch that shifts a carbonyl oxygen into the active site to coordinate a metal cofactor. Our analysis indicates that this switch is widely conserved among PP2C family members, serving as a platform to control phosphatase activity in response to diverse inputs. Remarkably, the switch is shared with proteasomal proteases, which we identify as evolutionary and structural relatives of PP2C phosphatases. Although these proteases use an unrelated catalytic mechanism, rotation of equivalent helices controls protease activity by movement of the equivalent carbonyl oxygen into the active site.
A widespread family of serine/threonine protein phosphatases shares a common regulatory switch with proteasomal proteases.,Bradshaw N, Levdikov VM, Zimanyi CM, Gaudet R, Wilkinson AJ, Losick R Elife. 2017 May 20;6. pii: e26111. doi: 10.7554/eLife.26111. PMID:28527238[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Bradshaw N, Levdikov VM, Zimanyi CM, Gaudet R, Wilkinson AJ, Losick R. A widespread family of serine/threonine protein phosphatases shares a common regulatory switch with proteasomal proteases. Elife. 2017 May 20;6. pii: e26111. doi: 10.7554/eLife.26111. PMID:28527238 doi:http://dx.doi.org/10.7554/eLife.26111
|