|
|
Line 3: |
Line 3: |
| <StructureSection load='5mse' size='340' side='right'caption='[[5mse]], [[Resolution|resolution]] 1.66Å' scene=''> | | <StructureSection load='5mse' size='340' side='right'caption='[[5mse]], [[Resolution|resolution]] 1.66Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[5mse]] is a 4 chain structure with sequence from [http://en.wikipedia.org/wiki/Aeqvi Aeqvi]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5MSE OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5MSE FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[5mse]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Aequorea_victoria Aequorea victoria]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5MSE OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=5MSE FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=IMD:IMIDAZOLE'>IMD</scene>, <scene name='pdbligand=NA:SODIUM+ION'>NA</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.66Å</td></tr> |
- | <tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=CRO:{2-[(1R,2R)-1-AMINO-2-HYDROXYPROPYL]-4-(4-HYDROXYBENZYLIDENE)-5-OXO-4,5-DIHYDRO-1H-IMIDAZOL-1-YL}ACETIC+ACID'>CRO</scene></td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CRO:{2-[(1R,2R)-1-AMINO-2-HYDROXYPROPYL]-4-(4-HYDROXYBENZYLIDENE)-5-OXO-4,5-DIHYDRO-1H-IMIDAZOL-1-YL}ACETIC+ACID'>CRO</scene>, <scene name='pdbligand=IMD:IMIDAZOLE'>IMD</scene>, <scene name='pdbligand=NA:SODIUM+ION'>NA</scene></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">GFP ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=6100 AEQVI])</td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=5mse FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5mse OCA], [https://pdbe.org/5mse PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=5mse RCSB], [https://www.ebi.ac.uk/pdbsum/5mse PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=5mse ProSAT]</span></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5mse FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5mse OCA], [http://pdbe.org/5mse PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5mse RCSB], [http://www.ebi.ac.uk/pdbsum/5mse PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5mse ProSAT]</span></td></tr> | + | |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/GFP_AEQVI GFP_AEQVI]] Energy-transfer acceptor. Its role is to transduce the blue chemiluminescence of the protein aequorin into green fluorescent light by energy transfer. Fluoresces in vivo upon receiving energy from the Ca(2+)-activated photoprotein aequorin. | + | [https://www.uniprot.org/uniprot/GFP_AEQVI GFP_AEQVI] Energy-transfer acceptor. Its role is to transduce the blue chemiluminescence of the protein aequorin into green fluorescent light by energy transfer. Fluoresces in vivo upon receiving energy from the Ca(2+)-activated photoprotein aequorin. |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 22: |
Line 21: |
| | | |
| ==See Also== | | ==See Also== |
- | *[[Green Fluorescent Protein|Green Fluorescent Protein]] | + | *[[Green Fluorescent Protein 3D structures|Green Fluorescent Protein 3D structures]] |
| == References == | | == References == |
| <references/> | | <references/> |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Aeqvi]] | + | [[Category: Aequorea victoria]] |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Gorlich, D]] | + | [[Category: Gorlich D]] |
- | [[Category: Huyton, T]] | + | [[Category: Huyton T]] |
- | [[Category: Fluorescent protein]]
| + | |
- | [[Category: Gfp nuclear transport receptor]]
| + | |
| Structural highlights
Function
GFP_AEQVI Energy-transfer acceptor. Its role is to transduce the blue chemiluminescence of the protein aequorin into green fluorescent light by energy transfer. Fluoresces in vivo upon receiving energy from the Ca(2+)-activated photoprotein aequorin.
Publication Abstract from PubMed
Nuclear pore complexes (NPCs) conduct nucleocytoplasmic transport through an FG domain-controlled barrier. We now explore how surface-features of a mobile species determine its NPC passage rate. Negative charges and lysines impede passage. Hydrophobic residues, certain polar residues (Cys, His), and, surprisingly, charged arginines have striking translocation-promoting effects. Favorable cation-pi interactions between arginines and FG-phenylalanines may explain this apparent paradox. Application of these principles to redesign the surface of GFP resulted in variants that show a wide span of transit rates, ranging from 35-fold slower than wild-type to approximately 500 times faster, with the latter outpacing even naturally occurring nuclear transport receptors (NTRs). The structure of a fast and particularly FG-specific GFP(NTR) variant illustrates how NTRs can expose multiple regions for binding hydrophobic FG motifs while evading non-specific aggregation. Finally, we document that even for NTR-mediated transport, the surface-properties of the "passively carried" cargo can strikingly affect the translocation rate.
Surface Properties Determining Passage Rates of Proteins through Nuclear Pores.,Frey S, Rees R, Schunemann J, Ng SC, Funfgeld K, Huyton T, Gorlich D Cell. 2018 Jun 28;174(1):202-217.e9. doi: 10.1016/j.cell.2018.05.045. PMID:29958108[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Frey S, Rees R, Schunemann J, Ng SC, Funfgeld K, Huyton T, Gorlich D. Surface Properties Determining Passage Rates of Proteins through Nuclear Pores. Cell. 2018 Jun 28;174(1):202-217.e9. doi: 10.1016/j.cell.2018.05.045. PMID:29958108 doi:http://dx.doi.org/10.1016/j.cell.2018.05.045
|