5n2w

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (17:59, 8 November 2023) (edit) (undo)
 
Line 1: Line 1:
==WT-Parkin and pUB complex==
==WT-Parkin and pUB complex==
-
<StructureSection load='5n2w' size='340' side='right' caption='[[5n2w]], [[Resolution|resolution]] 2.68&Aring;' scene=''>
+
<StructureSection load='5n2w' size='340' side='right'caption='[[5n2w]], [[Resolution|resolution]] 2.68&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
-
<table><tr><td colspan='2'>[[5n2w]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5N2W OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5N2W FirstGlance]. <br>
+
<table><tr><td colspan='2'>[[5n2w]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5N2W OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=5N2W FirstGlance]. <br>
-
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=TMO:TRIMETHYLAMINE+OXIDE'>TMO</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr>
+
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.68&#8491;</td></tr>
-
<tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=3CN:3-AMINOPROPANE'>3CN</scene>, <scene name='pdbligand=SEP:PHOSPHOSERINE'>SEP</scene></td></tr>
+
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=3CN:3-AMINOPROPANE'>3CN</scene>, <scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=SEP:PHOSPHOSERINE'>SEP</scene>, <scene name='pdbligand=TMO:TRIMETHYLAMINE+OXIDE'>TMO</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr>
-
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">PARK2, PRKN ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN]), UBB ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr>
+
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=5n2w FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5n2w OCA], [https://pdbe.org/5n2w PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=5n2w RCSB], [https://www.ebi.ac.uk/pdbsum/5n2w PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=5n2w ProSAT]</span></td></tr>
-
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5n2w FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5n2w OCA], [http://pdbe.org/5n2w PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5n2w RCSB], [http://www.ebi.ac.uk/pdbsum/5n2w PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5n2w ProSAT]</span></td></tr>
+
</table>
</table>
== Disease ==
== Disease ==
-
[[http://www.uniprot.org/uniprot/PRKN2_HUMAN PRKN2_HUMAN]] Defects in PARK2 are a cause of Parkinson disease (PARK) [MIM:[http://omim.org/entry/168600 168600]]. A complex neurodegenerative disorder characterized by bradykinesia, resting tremor, muscular rigidity and postural instability. Additional features are characteristic postural abnormalities, dysautonomia, dystonic cramps, and dementia. The pathology of Parkinson disease involves the loss of dopaminergic neurons in the substantia nigra and the presence of Lewy bodies (intraneuronal accumulations of aggregated proteins), in surviving neurons in various areas of the brain. The disease is progressive and usually manifests after the age of 50 years, although early-onset cases (before 50 years) are known. The majority of the cases are sporadic suggesting a multifactorial etiology based on environmental and genetic factors. However, some patients present with a positive family history for the disease. Familial forms of the disease usually begin at earlier ages and are associated with atypical clinical features.<ref>PMID:10888878</ref> <ref>PMID:20889974</ref> <ref>PMID:19966284</ref> <ref>PMID:21376232</ref> <ref>PMID:11590439</ref> <ref>PMID:12925569</ref> <ref>PMID:11431533</ref> <ref>PMID:9560156</ref> <ref>PMID:17360614</ref> <ref>PMID:9731209</ref> <ref>PMID:10072423</ref> <ref>PMID:10939576</ref> <ref>PMID:10824074</ref> <ref>PMID:11179010</ref> <ref>PMID:11487568</ref> <ref>PMID:11163284</ref> <ref>PMID:12116199</ref> <ref>PMID:12112109</ref> <ref>PMID:12114481</ref> <ref>PMID:12397156</ref> <ref>PMID:11971093</ref> <ref>PMID:12362318</ref> <ref>PMID:12730996</ref> <ref>PMID:12629236</ref> <ref>PMID:20404107</ref> Defects in PARK2 are the cause of Parkinson disease type 2 (PARK2) [MIM:[http://omim.org/entry/600116 600116]]; also known as early-onset parkinsonism with diurnal fluctuation (EPDF) or autosomal recessive juvenile Parkinson disease (PDJ). A neurodegenerative disorder characterized by bradykinesia, rigidity, postural instability, tremor, and onset usually befor 40. It differs from classic Parkinson disease by early DOPA-induced dyskinesia, diurnal fluctuation of the symptoms, sleep benefit, dystonia and hyper-reflexia. Dementia is absent. Pathologically, patients show loss of dopaminergic neurons in the substantia nigra, similar to that seen in Parkinson disease; however, Lewy bodies (intraneuronal accumulations of aggregated proteins) are absent.<ref>PMID:20889974</ref> <ref>PMID:11590439</ref> <ref>PMID:9560156</ref> <ref>PMID:17360614</ref> <ref>PMID:9731209</ref> <ref>PMID:10072423</ref> <ref>PMID:10939576</ref> <ref>PMID:11487568</ref> <ref>PMID:11163284</ref> <ref>PMID:12112109</ref> Note=Defects in PARK2 may be involved in the development and/or progression of ovarian cancer.
+
[https://www.uniprot.org/uniprot/PRKN_HUMAN PRKN_HUMAN] Young adult-onset Parkinsonism. Disease susceptibility may be associated with variations affecting the gene represented in this entry. Heterozygous mutations act as susceptibility alleles for late-onset Parkinson disease (PubMed:12730996 and PubMed:12629236). The disease is caused by mutations affecting the gene represented in this entry. Defects in PRKN may be involved in the development and/or progression of ovarian cancer.
== Function ==
== Function ==
-
[[http://www.uniprot.org/uniprot/PRKN2_HUMAN PRKN2_HUMAN]] Functions within a multiprotein E3 ubiquitin ligase complex, catalyzing the covalent attachment of ubiquitin moieties onto substrate proteins, such as BCL2, SYT11, CCNE1, GPR37, STUB1, a 22 kDa O-linked glycosylated isoform of SNCAIP, SEPT5, ZNF746 and AIMP2. Mediates monoubiquitination as well as 'Lys-48'-linked and 'Lys-63'-linked polyubiquitination of substrates depending on the context. Participates in the removal and/or detoxification of abnormally folded or damaged protein by mediating 'Lys-63'-linked polyubiquitination of misfolded proteins such as PARK7: 'Lys-63'-linked polyubiquitinated misfolded proteins are then recognized by HDAC6, leading to their recruitment to aggresomes, followed by degradation. Mediates 'Lys-63'-linked polyubiquitination of SNCAIP, possibly playing a role in Lewy-body formation. Mediates monoubiquitination of BCL2, thereby acting as a positive regulator of autophagy. Promotes the autophagic degradation of dysfunctional depolarized mitochondria. Mediates 'Lys-48'-linked polyubiquitination of ZNF746, followed by degradation of ZNF746 by the proteasome; possibly playing a role in role in regulation of neuron death. Limits the production of reactive oxygen species (ROS). Loss of this ubiquitin ligase activity appears to be the mechanism underlying pathogenesis of PARK2. May protect neurons against alpha synuclein toxicity, proteasomal dysfunction, GPR37 accumulation, and kainate-induced excitotoxicity. May play a role in controlling neurotransmitter trafficking at the presynaptic terminal and in calcium-dependent exocytosis. Regulates cyclin-E during neuronal apoptosis. May represent a tumor suppressor gene.<ref>PMID:10973942</ref> <ref>PMID:10888878</ref> <ref>PMID:12628165</ref> <ref>PMID:12719539</ref> <ref>PMID:15105460</ref> <ref>PMID:15728840</ref> <ref>PMID:16135753</ref> <ref>PMID:17846173</ref> <ref>PMID:19029340</ref> <ref>PMID:18541373</ref> <ref>PMID:20889974</ref> <ref>PMID:19966284</ref> <ref>PMID:21376232</ref> <ref>PMID:21532592</ref> [[http://www.uniprot.org/uniprot/UBB_HUMAN UBB_HUMAN]] Ubiquitin exists either covalently attached to another protein, or free (unanchored). When covalently bound, it is conjugated to target proteins via an isopeptide bond either as a monomer (monoubiquitin), a polymer linked via different Lys residues of the ubiquitin (polyubiquitin chains) or a linear polymer linked via the initiator Met of the ubiquitin (linear polyubiquitin chains). Polyubiquitin chains, when attached to a target protein, have different functions depending on the Lys residue of the ubiquitin that is linked: Lys-6-linked may be involved in DNA repair; Lys-11-linked is involved in ERAD (endoplasmic reticulum-associated degradation) and in cell-cycle regulation; Lys-29-linked is involved in lysosomal degradation; Lys-33-linked is involved in kinase modification; Lys-48-linked is involved in protein degradation via the proteasome; Lys-63-linked is involved in endocytosis, DNA-damage responses as well as in signaling processes leading to activation of the transcription factor NF-kappa-B. Linear polymer chains formed via attachment by the initiator Met lead to cell signaling. Ubiquitin is usually conjugated to Lys residues of target proteins, however, in rare cases, conjugation to Cys or Ser residues has been observed. When polyubiquitin is free (unanchored-polyubiquitin), it also has distinct roles, such as in activation of protein kinases, and in signaling.<ref>PMID:16543144</ref> <ref>PMID:19754430</ref>
+
[https://www.uniprot.org/uniprot/PRKN_HUMAN PRKN_HUMAN] Functions within a multiprotein E3 ubiquitin ligase complex, catalyzing the covalent attachment of ubiquitin moieties onto substrate proteins, such as BCL2, SYT11, CCNE1, GPR37, RHOT1/MIRO1, MFN1, MFN2, STUB1, SNCAIP, SEPT5, TOMM20, USP30, ZNF746 and AIMP2 (PubMed:10973942, PubMed:10888878, PubMed:11431533, PubMed:12150907, PubMed:12628165, PubMed:16135753, PubMed:21376232, PubMed:23754282, PubMed:23620051, PubMed:24660806, PubMed:24751536). Mediates monoubiquitination as well as 'Lys-6', 'Lys-11', 'Lys-48'-linked and 'Lys-63'-linked polyubiquitination of substrates depending on the context (PubMed:19229105, PubMed:20889974, PubMed:25621951). Participates in the removal and/or detoxification of abnormally folded or damaged protein by mediating 'Lys-63'-linked polyubiquitination of misfolded proteins such as PARK7: 'Lys-63'-linked polyubiquitinated misfolded proteins are then recognized by HDAC6, leading to their recruitment to aggresomes, followed by degradation (PubMed:17846173, PubMed:19229105). Mediates 'Lys-63'-linked polyubiquitination of a 22 kDa O-linked glycosylated isoform of SNCAIP, possibly playing a role in Lewy-body formation (PubMed:11590439, PubMed:11431533, PubMed:19229105, PubMed:11590439, PubMed:15728840). Mediates monoubiquitination of BCL2, thereby acting as a positive regulator of autophagy (PubMed:20889974). Promotes the autophagic degradation of dysfunctional depolarized mitochondria (mitophagy) by promoting the ubiquitination of mitochondrial proteins such as TOMM20, RHOT1/MIRO1 and USP30 (PubMed:19029340, PubMed:19966284, PubMed:23620051, PubMed:24896179, PubMed:25527291). Preferentially assembles 'Lys-6'-, 'Lys-11'- and 'Lys-63'-linked polyubiquitin chains following mitochondrial damage, leading to mitophagy (PubMed:25621951). Mediates 'Lys-48'-linked polyubiquitination of ZNF746, followed by degradation of ZNF746 by the proteasome; possibly playing a role in the regulation of neuron death (PubMed:21376232). Limits the production of reactive oxygen species (ROS). Regulates cyclin-E during neuronal apoptosis. In collaboration with CHPF isoform 2, may enhance cell viability and protect cells from oxidative stress (PubMed:22082830). Independently of its ubiquitin ligase activity, protects from apoptosis by the transcriptional repression of p53/TP53 (PubMed:19801972). May protect neurons against alpha synuclein toxicity, proteasomal dysfunction, GPR37 accumulation, and kainate-induced excitotoxicity (PubMed:11439185). May play a role in controlling neurotransmitter trafficking at the presynaptic terminal and in calcium-dependent exocytosis. May represent a tumor suppressor gene.<ref>PMID:10888878</ref> <ref>PMID:10973942</ref> <ref>PMID:11431533</ref> <ref>PMID:11590439</ref> <ref>PMID:12628165</ref> <ref>PMID:12719539</ref> <ref>PMID:15105460</ref> <ref>PMID:15728840</ref> <ref>PMID:16135753</ref> <ref>PMID:17846173</ref> <ref>PMID:18541373</ref> <ref>PMID:19029340</ref> <ref>PMID:19229105</ref> <ref>PMID:19801972</ref> <ref>PMID:19966284</ref> <ref>PMID:20889974</ref> <ref>PMID:21376232</ref> <ref>PMID:21532592</ref> <ref>PMID:22082830</ref> <ref>PMID:23620051</ref> <ref>PMID:23754282</ref> <ref>PMID:23933751</ref> <ref>PMID:24660806</ref> <ref>PMID:24751536</ref> <ref>PMID:24784582</ref> <ref>PMID:24896179</ref> <ref>PMID:25527291</ref> <ref>PMID:25621951</ref>
<div style="background-color:#fffaf0;">
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
== Publication Abstract from PubMed ==
Line 22: Line 21:
</div>
</div>
<div class="pdbe-citations 5n2w" style="background-color:#fffaf0;"></div>
<div class="pdbe-citations 5n2w" style="background-color:#fffaf0;"></div>
 +
 +
==See Also==
 +
*[[Ubiquitin protein ligase 3D structures|Ubiquitin protein ligase 3D structures]]
 +
*[[3D structures of ubiquitin|3D structures of ubiquitin]]
== References ==
== References ==
<references/>
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>
-
[[Category: Human]]
+
[[Category: Homo sapiens]]
-
[[Category: Chaugule, V K]]
+
[[Category: Large Structures]]
-
[[Category: Johnson, C]]
+
[[Category: Chaugule VK]]
-
[[Category: Knebel, A]]
+
[[Category: Johnson C]]
-
[[Category: Kumar, A]]
+
[[Category: Knebel A]]
-
[[Category: Sundaramoorthy, R]]
+
[[Category: Kumar A]]
-
[[Category: Toth, R]]
+
[[Category: Sundaramoorthy R]]
-
[[Category: Walden, H]]
+
[[Category: Toth R]]
-
[[Category: Complex structure of parkin and pub]]
+
[[Category: Walden H]]
-
[[Category: Ligase]]
+
-
[[Category: Transferase]]
+

Current revision

WT-Parkin and pUB complex

PDB ID 5n2w

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools