|
|
| Line 3: |
Line 3: |
| | <StructureSection load='6plv' size='340' side='right'caption='[[6plv]], [[Resolution|resolution]] 3.30Å' scene=''> | | <StructureSection load='6plv' size='340' side='right'caption='[[6plv]], [[Resolution|resolution]] 3.30Å' scene=''> |
| | == Structural highlights == | | == Structural highlights == |
| - | <table><tr><td colspan='2'>[[6plv]] is a 5 chain structure with sequence from [https://en.wikipedia.org/wiki/Brachidanio_rerio Brachidanio rerio]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6PLV OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6PLV FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[6plv]] is a 5 chain structure with sequence from [https://en.wikipedia.org/wiki/Danio_rerio Danio rerio]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6PLV OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6PLV FirstGlance]. <br> |
| - | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ABU:GAMMA-AMINO-BUTANOIC+ACID'>ABU</scene>, <scene name='pdbligand=UNL:UNKNOWN+LIGAND'>UNL</scene>, <scene name='pdbligand=NAG:N-ACETYL-D-GLUCOSAMINE'>NAG</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Electron Microscopy, [[Resolution|Resolution]] 3.3Å</td></tr> |
| - | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">glra1 ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=7955 Brachidanio rerio])</td></tr>
| + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ABU:GAMMA-AMINO-BUTANOIC+ACID'>ABU</scene>, <scene name='pdbligand=NAG:N-ACETYL-D-GLUCOSAMINE'>NAG</scene>, <scene name='pdbligand=UNL:UNKNOWN+LIGAND'>UNL</scene></td></tr> |
| | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6plv FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6plv OCA], [https://pdbe.org/6plv PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6plv RCSB], [https://www.ebi.ac.uk/pdbsum/6plv PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6plv ProSAT]</span></td></tr> | | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6plv FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6plv OCA], [https://pdbe.org/6plv PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6plv RCSB], [https://www.ebi.ac.uk/pdbsum/6plv PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6plv ProSAT]</span></td></tr> |
| | </table> | | </table> |
| | == Function == | | == Function == |
| - | [[https://www.uniprot.org/uniprot/GLRA1_DANRE GLRA1_DANRE]] Glycine receptors are ligand-gated chloride channels. Channel opening is triggered by extracellular glycine (PubMed:10188956, PubMed:26344198). Plays an important role in the down-regulation of neuronal excitability. Contributes to the generation of inhibitory postsynaptic currents. Channel activity is potentiated by ethanol (By similarity).[UniProtKB:P23415]<ref>PMID:10188956</ref> <ref>PMID:26344198</ref>
| + | [https://www.uniprot.org/uniprot/GLRA1_DANRE GLRA1_DANRE] Glycine receptors are ligand-gated chloride channels. Channel opening is triggered by extracellular glycine (PubMed:10188956, PubMed:26344198). Plays an important role in the down-regulation of neuronal excitability. Contributes to the generation of inhibitory postsynaptic currents. Channel activity is potentiated by ethanol (By similarity).[UniProtKB:P23415]<ref>PMID:10188956</ref> <ref>PMID:26344198</ref> |
| | <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| | == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
| Line 23: |
Line 23: |
| | __TOC__ | | __TOC__ |
| | </StructureSection> | | </StructureSection> |
| - | [[Category: Brachidanio rerio]] | + | [[Category: Danio rerio]] |
| | [[Category: Large Structures]] | | [[Category: Large Structures]] |
| - | [[Category: Gouaux, E]] | + | [[Category: Gouaux E]] |
| - | [[Category: Yu, J]] | + | [[Category: Yu J]] |
| - | [[Category: Zhu, H]] | + | [[Category: Zhu H]] |
| - | [[Category: Cryoem]]
| + | |
| - | [[Category: Glycine receptor]]
| + | |
| - | [[Category: Membrane protein]]
| + | |
| - | [[Category: Nanodisc]]
| + | |
| Structural highlights
Function
GLRA1_DANRE Glycine receptors are ligand-gated chloride channels. Channel opening is triggered by extracellular glycine (PubMed:10188956, PubMed:26344198). Plays an important role in the down-regulation of neuronal excitability. Contributes to the generation of inhibitory postsynaptic currents. Channel activity is potentiated by ethanol (By similarity).[UniProtKB:P23415][1] [2]
Publication Abstract from PubMed
Ligand-gated ion channels mediate signal transduction at chemical synapses and transition between resting, open, and desensitized states in response to neurotransmitter binding. Neurotransmitters that produce maximum open channel probabilities (Po) are full agonists, whereas those that yield lower than maximum Po are partial agonists. Cys-loop receptors are an important class of neurotransmitter receptors, yet a structure-based understanding of the mechanism of partial agonist action has proven elusive. Here, we study the glycine receptor with the full agonist glycine and the partial agonists taurine and gamma-amino butyric acid (GABA). We use electrophysiology to show how partial agonists populate agonist-bound, closed channel states and cryo-EM reconstructions to illuminate the structures of intermediate, pre-open states, providing insights into previously unseen conformational states along the receptor reaction pathway. We further correlate agonist-induced conformational changes to Po across members of the receptor family, providing a hypothetical mechanism for partial and full agonist action at Cys-loop receptors.
Mechanism of gating and partial agonist action in the glycine receptor.,Yu J, Zhu H, Lape R, Greiner T, Du J, Lu W, Sivilotti L, Gouaux E Cell. 2021 Feb 18;184(4):957-968.e21. doi: 10.1016/j.cell.2021.01.026. Epub 2021 , Feb 9. PMID:33567265[3]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ David-Watine B, Goblet C, de Saint Jan D, Fucile S, Devignot V, Bregestovski P, Korn H. Cloning, expression and electrophysiological characterization of glycine receptor alpha subunit from zebrafish. Neuroscience. 1999 Apr;90(1):303-17. doi: 10.1016/s0306-4522(98)00430-8. PMID:10188956 doi:http://dx.doi.org/10.1016/s0306-4522(98)00430-8
- ↑ Du J, Lu W, Wu S, Cheng Y, Gouaux E. Glycine receptor mechanism elucidated by electron cryo-microscopy. Nature. 2015 Sep 7. doi: 10.1038/nature14853. PMID:26344198 doi:http://dx.doi.org/10.1038/nature14853
- ↑ Yu J, Zhu H, Lape R, Greiner T, Du J, Lu W, Sivilotti L, Gouaux E. Mechanism of gating and partial agonist action in the glycine receptor. Cell. 2021 Feb 18;184(4):957-968.e21. doi: 10.1016/j.cell.2021.01.026. Epub 2021 , Feb 9. PMID:33567265 doi:http://dx.doi.org/10.1016/j.cell.2021.01.026
|