|
|
Line 1: |
Line 1: |
| | | |
| ==Crystal structure of Xenopus embryonic epidermal lectin in complex with Samarium ions== | | ==Crystal structure of Xenopus embryonic epidermal lectin in complex with Samarium ions== |
- | <StructureSection load='5zc0' size='340' side='right' caption='[[5zc0]], [[Resolution|resolution]] 2.75Å' scene=''> | + | <StructureSection load='5zc0' size='340' side='right'caption='[[5zc0]], [[Resolution|resolution]] 2.75Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[5zc0]] is a 6 chain structure with sequence from [http://en.wikipedia.org/wiki/African_clawed_frog African clawed frog]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5ZC0 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5ZC0 FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[5zc0]] is a 6 chain structure with sequence from [https://en.wikipedia.org/wiki/Xenopus_laevis Xenopus laevis]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5ZC0 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=5ZC0 FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=SM:SAMARIUM+(III)+ION'>SM</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.75Å</td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">itln1 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=8355 African clawed frog])</td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=SM:SAMARIUM+(III)+ION'>SM</scene></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5zc0 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5zc0 OCA], [http://pdbe.org/5zc0 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5zc0 RCSB], [http://www.ebi.ac.uk/pdbsum/5zc0 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5zc0 ProSAT]</span></td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=5zc0 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5zc0 OCA], [https://pdbe.org/5zc0 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=5zc0 RCSB], [https://www.ebi.ac.uk/pdbsum/5zc0 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=5zc0 ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/ITLN1_XENLA ITLN1_XENLA]] Lectin that specifically recognizes microbial carbohydrate chains in a calcium-dependent manner (PubMed:26755729). Binds to microbial glycans that contain a terminal acyclic 1,2-diol moiety, including beta-linked D-galactofuranose (beta-Galf) and D-phosphoglycerol-modified glycans (PubMed:26755729). Binds to S.pneumoniae serotypes with glycans that contain beta-linked D-galactofuranose (beta-Galf) and with D-phosphoglycerol-modified glycans (PubMed:26755729). Can bind a variety of monosaccharides (in vitro) (PubMed:15537792). Probably plays a role in the defense system against microorganisms (Probable).<ref>PMID:15537792</ref> <ref>PMID:26755729</ref> | + | [https://www.uniprot.org/uniprot/ITLN1_XENLA ITLN1_XENLA] Lectin that specifically recognizes microbial carbohydrate chains in a calcium-dependent manner (PubMed:26755729). Binds to microbial glycans that contain a terminal acyclic 1,2-diol moiety, including beta-linked D-galactofuranose (beta-Galf) and D-phosphoglycerol-modified glycans (PubMed:26755729). Binds to S.pneumoniae serotypes with glycans that contain beta-linked D-galactofuranose (beta-Galf) and with D-phosphoglycerol-modified glycans (PubMed:26755729). Can bind a variety of monosaccharides (in vitro) (PubMed:15537792). Probably plays a role in the defense system against microorganisms (Probable).<ref>PMID:15537792</ref> <ref>PMID:26755729</ref> |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 23: |
Line 23: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: African clawed frog]] | + | [[Category: Large Structures]] |
- | [[Category: Wangkanont, K]] | + | [[Category: Xenopus laevis]] |
- | [[Category: Carbohydrate binding protein]] | + | [[Category: Wangkanont K]] |
- | [[Category: Intelectin]]
| + | |
- | [[Category: Lectin]]
| + | |
- | [[Category: Samarium]]
| + | |
- | [[Category: Sugar binding protein]]
| + | |
- | [[Category: Xeel]]
| + | |
| Structural highlights
Function
ITLN1_XENLA Lectin that specifically recognizes microbial carbohydrate chains in a calcium-dependent manner (PubMed:26755729). Binds to microbial glycans that contain a terminal acyclic 1,2-diol moiety, including beta-linked D-galactofuranose (beta-Galf) and D-phosphoglycerol-modified glycans (PubMed:26755729). Binds to S.pneumoniae serotypes with glycans that contain beta-linked D-galactofuranose (beta-Galf) and with D-phosphoglycerol-modified glycans (PubMed:26755729). Can bind a variety of monosaccharides (in vitro) (PubMed:15537792). Probably plays a role in the defense system against microorganisms (Probable).[1] [2]
Publication Abstract from PubMed
We extend our study of the structural stability of helical and nonhelical regions in chain A of human intelectin-1 to include a second human intelectin (4WMY) and the frog protein "Xenopus embryonic epidermal lectin" (XEEL). These unique lectins have been shown to recognize carbohydrate residues found exclusively in microbes, thus they could potentially be developed into novel microbe detection and sequestration tools. We believe that by studying the structural stability of these proteins we can provide insights on their biological role and activities. Using a geometrical model introduced previously, we perform computational analyses of protein crystal structures that quantify the resiliency of the native state to steric perturbations. Based on these analyses, we conclude that differences in the resiliency of the human and frog proteins can be attributed primarily to differences in non-helical regions and to residues near Ca ions. Since these differences are particularly pronounced in the vicinity of the ligand binding site, they provide an explanation for the finding that human intelectin-1 has a higher affinity for a ligand than XEEL. We also present data on conserved and position-equivalent pairs of residues in 4WMY and XEEL. We identify residue pairs as well as regions in which the influence of neighboring residues is nearly uniform as the parent protein denatures. Since the structural signatures are conserved, this identification provides a basis for understanding why both proteins exhibit trimeric structures despite poor sequence conservation at the interface.
Structural stabilities of calcium proteins: Human intelectin-1 and frog lectin XEEL.,Kozak JJ, Gray HB, Garza-Lopez RA, Wangkanont K J Inorg Biochem. 2018 Aug;185:86-102. doi: 10.1016/j.jinorgbio.2018.04.021. Epub , 2018 May 2. PMID:29807191[3]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Nagata S. Isolation, characterization, and extra-embryonic secretion of the Xenopus laevis embryonic epidermal lectin, XEEL. Glycobiology. 2005 Mar;15(3):281-90. doi: 10.1093/glycob/cwi010. Epub 2004 Nov, 10. PMID:15537792 doi:http://dx.doi.org/10.1093/glycob/cwi010
- ↑ Wangkanont K, Wesener DA, Vidani JA, Kiessling LL, Forest KT. Structures of Xenopus embryonic epidermal lectin reveal a conserved mechanism of microbial glycan recognition. J Biol Chem. 2016 Jan 11. pii: jbc.M115.709212. PMID:26755729 doi:http://dx.doi.org/10.1074/jbc.M115.709212
- ↑ Kozak JJ, Gray HB, Garza-Lopez RA, Wangkanont K. Structural stabilities of calcium proteins: Human intelectin-1 and frog lectin XEEL. J Inorg Biochem. 2018 Aug;185:86-102. doi: 10.1016/j.jinorgbio.2018.04.021. Epub , 2018 May 2. PMID:29807191 doi:http://dx.doi.org/10.1016/j.jinorgbio.2018.04.021
|