|
|
Line 1: |
Line 1: |
| | | |
| ==Crystal structure of human katanin AAA ATPase domain complex with ATPgammaS== | | ==Crystal structure of human katanin AAA ATPase domain complex with ATPgammaS== |
- | <StructureSection load='5zqm' size='340' side='right' caption='[[5zqm]], [[Resolution|resolution]] 2.90Å' scene=''> | + | <StructureSection load='5zqm' size='340' side='right'caption='[[5zqm]], [[Resolution|resolution]] 2.90Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[5zqm]] is a 1 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5ZQM OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5ZQM FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[5zqm]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5ZQM OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=5ZQM FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=AGS:PHOSPHOTHIOPHOSPHORIC+ACID-ADENYLATE+ESTER'>AGS</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.9Å</td></tr> |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Microtubule-severing_ATPase Microtubule-severing ATPase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.6.4.3 3.6.4.3] </span></td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=AGS:PHOSPHOTHIOPHOSPHORIC+ACID-ADENYLATE+ESTER'>AGS</scene></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5zqm FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5zqm OCA], [http://pdbe.org/5zqm PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5zqm RCSB], [http://www.ebi.ac.uk/pdbsum/5zqm PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5zqm ProSAT]</span></td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=5zqm FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5zqm OCA], [https://pdbe.org/5zqm PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=5zqm RCSB], [https://www.ebi.ac.uk/pdbsum/5zqm PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=5zqm ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/KTNA1_HUMAN KTNA1_HUMAN]] Catalytic subunit of a complex which severs microtubules in an ATP-dependent manner. Microtubule severing may promote rapid reorganization of cellular microtubule arrays and the release of microtubules from the centrosome following nucleation. Microtubule release from the mitotic spindle poles may allow depolymerization of the microtubule end proximal to the spindle pole, leading to poleward microtubule flux and poleward motion of chromosome. Microtubule release within the cell body of neurons may be required for their transport into neuronal processes by microtubule-dependent motor proteins. This transport is required for axonal growth.[HAMAP-Rule:MF_03023]<ref>PMID:10751153</ref> <ref>PMID:11870226</ref> <ref>PMID:19287380</ref> | + | [https://www.uniprot.org/uniprot/KTNA1_HUMAN KTNA1_HUMAN] Catalytic subunit of a complex which severs microtubules in an ATP-dependent manner. Microtubule severing may promote rapid reorganization of cellular microtubule arrays and the release of microtubules from the centrosome following nucleation. Microtubule release from the mitotic spindle poles may allow depolymerization of the microtubule end proximal to the spindle pole, leading to poleward microtubule flux and poleward motion of chromosome. Microtubule release within the cell body of neurons may be required for their transport into neuronal processes by microtubule-dependent motor proteins. This transport is required for axonal growth.[HAMAP-Rule:MF_03023]<ref>PMID:10751153</ref> <ref>PMID:11870226</ref> <ref>PMID:19287380</ref> |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 23: |
Line 23: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Microtubule-severing ATPase]] | + | [[Category: Homo sapiens]] |
- | [[Category: Kim, E E]] | + | [[Category: Large Structures]] |
- | [[Category: Shin, S C]] | + | [[Category: Kim EE]] |
- | [[Category: Aaa atpase]] | + | [[Category: Shin SC]] |
- | [[Category: Hydrolase]]
| + | |
- | [[Category: Katanin p60]]
| + | |
| Structural highlights
Function
KTNA1_HUMAN Catalytic subunit of a complex which severs microtubules in an ATP-dependent manner. Microtubule severing may promote rapid reorganization of cellular microtubule arrays and the release of microtubules from the centrosome following nucleation. Microtubule release from the mitotic spindle poles may allow depolymerization of the microtubule end proximal to the spindle pole, leading to poleward microtubule flux and poleward motion of chromosome. Microtubule release within the cell body of neurons may be required for their transport into neuronal processes by microtubule-dependent motor proteins. This transport is required for axonal growth.[HAMAP-Rule:MF_03023][1] [2] [3]
Publication Abstract from PubMed
Katanin was the first microtubule (MT)-severing enzyme discovered, but how katanin executes MT severing remains poorly understood. Here, we report X-ray crystal structures of the apo and ATPgammaS-bound states of the catalytic AAA domain of human katanin p60 at 3.0 and 2.9 A resolution, respectively. Comparison of the two structures reveals conformational changes induced by ATP binding and how such changes ensure hexamer stability. Moreover, we uncover structural details of pore loops (PLs) and show that Arg283, a residue unique to katanin among MT-severing enzymes, protrudes from PL1 and lines the entry of the catalytic pore. Functional studies suggest that PL1 and Arg283 play essential roles in the recognition and remodeling of the glutamylated, C-terminal tubulin tail and regulation of axon growth. In addition, domain-swapping experiments in katanin and spastin suggest that the non-homologous N-terminal region, which contains the MT-interacting and trafficking domain and a linker, confers specificity to the severing process.
Structural and Molecular Basis for Katanin-Mediated Severing of Glutamylated Microtubules.,Shin SC, Im SK, Jang EH, Jin KS, Hur EM, Kim EE Cell Rep. 2019 Jan 29;26(5):1357-1367.e5. doi: 10.1016/j.celrep.2019.01.020. PMID:30699360[4]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ McNally KP, Bazirgan OA, McNally FJ. Two domains of p80 katanin regulate microtubule severing and spindle pole targeting by p60 katanin. J Cell Sci. 2000 May;113 ( Pt 9):1623-33. PMID:10751153
- ↑ Buster D, McNally K, McNally FJ. Katanin inhibition prevents the redistribution of gamma-tubulin at mitosis. J Cell Sci. 2002 Mar 1;115(Pt 5):1083-92. PMID:11870226
- ↑ Maddika S, Chen J. Protein kinase DYRK2 is a scaffold that facilitates assembly of an E3 ligase. Nat Cell Biol. 2009 Apr;11(4):409-19. doi: 10.1038/ncb1848. Epub 2009 Mar 15. PMID:19287380 doi:10.1038/ncb1848
- ↑ Shin SC, Im SK, Jang EH, Jin KS, Hur EM, Kim EE. Structural and Molecular Basis for Katanin-Mediated Severing of Glutamylated Microtubules. Cell Rep. 2019 Jan 29;26(5):1357-1367.e5. doi: 10.1016/j.celrep.2019.01.020. PMID:30699360 doi:http://dx.doi.org/10.1016/j.celrep.2019.01.020
|