|
|
Line 3: |
Line 3: |
| <StructureSection load='6iqh' size='340' side='right'caption='[[6iqh]], [[Resolution|resolution]] 3.00Å' scene=''> | | <StructureSection load='6iqh' size='340' side='right'caption='[[6iqh]], [[Resolution|resolution]] 3.00Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[6iqh]] is a 4 chain structure with sequence from [http://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6IQH OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6IQH FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[6iqh]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens] and [https://en.wikipedia.org/wiki/Synthetic_construct Synthetic construct]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6IQH OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6IQH FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=BMA:BETA-D-MANNOSE'>BMA</scene>, <scene name='pdbligand=FUC:ALPHA-L-FUCOSE'>FUC</scene>, <scene name='pdbligand=GUA:GLUTARIC+ACID'>GUA</scene>, <scene name='pdbligand=MAN:ALPHA-D-MANNOSE'>MAN</scene>, <scene name='pdbligand=NAG:N-ACETYL-D-GLUCOSAMINE'>NAG</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.999Å</td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6iqh FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6iqh OCA], [http://pdbe.org/6iqh PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6iqh RCSB], [http://www.ebi.ac.uk/pdbsum/6iqh PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6iqh ProSAT]</span></td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=BMA:BETA-D-MANNOSE'>BMA</scene>, <scene name='pdbligand=FUC:ALPHA-L-FUCOSE'>FUC</scene>, <scene name='pdbligand=GUA:GLUTARIC+ACID'>GUA</scene>, <scene name='pdbligand=MAN:ALPHA-D-MANNOSE'>MAN</scene>, <scene name='pdbligand=NAG:N-ACETYL-D-GLUCOSAMINE'>NAG</scene></td></tr> |
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6iqh FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6iqh OCA], [https://pdbe.org/6iqh PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6iqh RCSB], [https://www.ebi.ac.uk/pdbsum/6iqh PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6iqh ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/IGG1_HUMAN IGG1_HUMAN]] Immunoglobulins, also known as antibodies, are membrane-bound or secreted glycoproteins produced by B lymphocytes. In the recognition phase of humoral immunity, the membrane-bound immunoglobulins serve as receptors which, upon binding of a specific antigen, trigger the clonal expansion and differentiation of B lymphocytes into immunoglobulins-secreting plasma cells. Secreted immunoglobulins mediate the effector phase of humoral immunity, which results in the elimination of bound antigens (PubMed:22158414, PubMed:20176268). The antigen binding site is formed by the variable domain of one heavy chain, together with that of its associated light chain. Thus, each immunoglobulin has two antigen binding sites with remarkable affinity for a particular antigen. The variable domains are assembled by a process called V-(D)-J rearrangement and can then be subjected to somatic hypermutations which, after exposure to antigen and selection, allow affinity maturation for a particular antigen (PubMed:20176268, PubMed:17576170).<ref>PMID:17576170</ref> <ref>PMID:20176268</ref> <ref>PMID:22158414</ref> | + | [https://www.uniprot.org/uniprot/IGG1_HUMAN IGG1_HUMAN] Immunoglobulins, also known as antibodies, are membrane-bound or secreted glycoproteins produced by B lymphocytes. In the recognition phase of humoral immunity, the membrane-bound immunoglobulins serve as receptors which, upon binding of a specific antigen, trigger the clonal expansion and differentiation of B lymphocytes into immunoglobulins-secreting plasma cells. Secreted immunoglobulins mediate the effector phase of humoral immunity, which results in the elimination of bound antigens (PubMed:22158414, PubMed:20176268). The antigen binding site is formed by the variable domain of one heavy chain, together with that of its associated light chain. Thus, each immunoglobulin has two antigen binding sites with remarkable affinity for a particular antigen. The variable domains are assembled by a process called V-(D)-J rearrangement and can then be subjected to somatic hypermutations which, after exposure to antigen and selection, allow affinity maturation for a particular antigen (PubMed:20176268, PubMed:17576170).<ref>PMID:17576170</ref> <ref>PMID:20176268</ref> <ref>PMID:22158414</ref> |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 22: |
Line 23: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Human]] | + | [[Category: Homo sapiens]] |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Adachi, M]] | + | [[Category: Synthetic construct]] |
- | [[Category: Ito, Y]] | + | [[Category: Adachi M]] |
- | [[Category: Complex]] | + | [[Category: Ito Y]] |
- | [[Category: Fc]]
| + | |
- | [[Category: Immune system]]
| + | |
| Structural highlights
6iqh is a 4 chain structure with sequence from Homo sapiens and Synthetic construct. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
| Method: | X-ray diffraction, Resolution 2.999Å |
Ligands: | , , , , |
Resources: | FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT |
Function
IGG1_HUMAN Immunoglobulins, also known as antibodies, are membrane-bound or secreted glycoproteins produced by B lymphocytes. In the recognition phase of humoral immunity, the membrane-bound immunoglobulins serve as receptors which, upon binding of a specific antigen, trigger the clonal expansion and differentiation of B lymphocytes into immunoglobulins-secreting plasma cells. Secreted immunoglobulins mediate the effector phase of humoral immunity, which results in the elimination of bound antigens (PubMed:22158414, PubMed:20176268). The antigen binding site is formed by the variable domain of one heavy chain, together with that of its associated light chain. Thus, each immunoglobulin has two antigen binding sites with remarkable affinity for a particular antigen. The variable domains are assembled by a process called V-(D)-J rearrangement and can then be subjected to somatic hypermutations which, after exposure to antigen and selection, allow affinity maturation for a particular antigen (PubMed:20176268, PubMed:17576170).[1] [2] [3]
Publication Abstract from PubMed
Artificially modified IgG molecules are increasingly utilized in industrial and clinical applications. In the present study, the method of chemical conjugation by affinity peptide (CCAP) for site-specific chemical modification has been developed by using a peptide that bound with high affinity to human IgG-Fc. This method enabled a rapid modification of a specific res-idue (Lys248 on Fc) in a one-step reaction under mild condition to form a stable amide bond between the peptide and Fc. The monovalent peptide-IgG conjugate not only maintained complete antigen binding but also bound to Fc receptors (FcRn, FcRgammaI, and FcRgammaIIIa), indicating that it is a suitable conjugate form that can be further developed into highly func-tional antibody therapeutics. CCAP was applied for the preparation of an antibody-drug conjugate and a bispecific anti-body to demonstrate the usefulness of this method.
Site-specific chemical conjugation of antibodies by using affinity peptide for the development of therapeutic antibody format.,Kishimoto S, Nakashimada Y, Yokota R, Hatanaka T, Adachi M, Ito Y Bioconjug Chem. 2019 Jan 4. doi: 10.1021/acs.bioconjchem.8b00865. PMID:30606013[4]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Teng G, Papavasiliou FN. Immunoglobulin somatic hypermutation. Annu Rev Genet. 2007;41:107-20. PMID:17576170 doi:http://dx.doi.org/10.1146/annurev.genet.41.110306.130340
- ↑ Schroeder HW Jr, Cavacini L. Structure and function of immunoglobulins. J Allergy Clin Immunol. 2010 Feb;125(2 Suppl 2):S41-52. doi:, 10.1016/j.jaci.2009.09.046. PMID:20176268 doi:http://dx.doi.org/10.1016/j.jaci.2009.09.046
- ↑ McHeyzer-Williams M, Okitsu S, Wang N, McHeyzer-Williams L. Molecular programming of B cell memory. Nat Rev Immunol. 2011 Dec 9;12(1):24-34. doi: 10.1038/nri3128. PMID:22158414 doi:http://dx.doi.org/10.1038/nri3128
- ↑ Kishimoto S, Nakashimada Y, Yokota R, Hatanaka T, Adachi M, Ito Y. Site-specific chemical conjugation of antibodies by using affinity peptide for the development of therapeutic antibody format. Bioconjug Chem. 2019 Jan 4. doi: 10.1021/acs.bioconjchem.8b00865. PMID:30606013 doi:http://dx.doi.org/10.1021/acs.bioconjchem.8b00865
|