|
|
Line 3: |
Line 3: |
| <StructureSection load='6j7m' size='340' side='right'caption='[[6j7m]], [[Resolution|resolution]] 2.30Å' scene=''> | | <StructureSection load='6j7m' size='340' side='right'caption='[[6j7m]], [[Resolution|resolution]] 2.30Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[6j7m]] is a 4 chain structure with sequence from [http://en.wikipedia.org/wiki/Pseae Pseae]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6J7M OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6J7M FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[6j7m]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Pseudomonas_aeruginosa_PAO1 Pseudomonas aeruginosa PAO1]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6J7M OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6J7M FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=TYD:THYMIDINE-5-DIPHOSPHATE'>TYD</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.301Å</td></tr> |
- | <tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=MSE:SELENOMETHIONINE'>MSE</scene></td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=MSE:SELENOMETHIONINE'>MSE</scene>, <scene name='pdbligand=TYD:THYMIDINE-5-DIPHOSPHATE'>TYD</scene></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">PA2852 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=208964 PSEAE]), efp ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=208964 PSEAE])</td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6j7m FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6j7m OCA], [https://pdbe.org/6j7m PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6j7m RCSB], [https://www.ebi.ac.uk/pdbsum/6j7m PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6j7m ProSAT]</span></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6j7m FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6j7m OCA], [http://pdbe.org/6j7m PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6j7m RCSB], [http://www.ebi.ac.uk/pdbsum/6j7m PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6j7m ProSAT]</span></td></tr> | + | |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/EFP_PSEAE EFP_PSEAE]] Involved in peptide bond synthesis. Stimulates efficient translation and peptide-bond synthesis on native or reconstituted 70S ribosomes in vitro. Probably functions indirectly by altering the affinity of the ribosome for aminoacyl-tRNA, thus increasing their reactivity as acceptors for peptidyl transferase.[HAMAP-Rule:MF_00141] | + | [https://www.uniprot.org/uniprot/EARP_PSEAE EARP_PSEAE] Protein-arginine rhamnosyltransferase that catalyzes the transfer of a single rhamnose to elongation factor P (EF-P) on 'Lys-32', a modification required for EF-P-dependent rescue of polyproline stalled ribosomes.<ref>PMID:26060278</ref> <ref>PMID:31010899</ref> |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 28: |
Line 27: |
| </StructureSection> | | </StructureSection> |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Pseae]] | + | [[Category: Pseudomonas aeruginosa PAO1]] |
- | [[Category: He, C]] | + | [[Category: He C]] |
- | [[Category: Li, F]] | + | [[Category: Li F]] |
- | [[Category: Rhamnosyltransferase]]
| + | |
- | [[Category: Transferase]]
| + | |
| Structural highlights
Function
EARP_PSEAE Protein-arginine rhamnosyltransferase that catalyzes the transfer of a single rhamnose to elongation factor P (EF-P) on 'Lys-32', a modification required for EF-P-dependent rescue of polyproline stalled ribosomes.[1] [2]
Publication Abstract from PubMed
A bacterial inverting glycosyltransferase EarP transfers rhamnose from dTDP-beta-l-rhamnose (TDP-Rha) to Arg32 of translation elongation factor P (EF-P) to activate its function. We report here the structural and biochemical characterization of Pseudomonas aeruginosa EarP. In contrast to recently reported Neisseria meningitidis EarP, P. aeruginosa EarP exhibits differential conformational changes upon TDP-Rha and EF-P binding. Sugar donor binding enhances acceptor binding to EarP, as revealed by structural comparison between the apo-, TDP-Rha-, and TDP/EF-P-bound forms and isothermal titration calorimetry experiments. In vitro EF-P rhamnosylation combined with active-site geometry indicates that Asp16 corresponding to Asp20 of N. meningitidis EarP is the catalytic base, whereas Glu272 is another putative catalytic residue. Our study should provide the basis for EarP-targeted inhibitor design against infections from P. aeruginosa and other clinically relevant species.IMPORTANCE Posttranslational rhamnosylation of EF-P plays a key role in Pseudomonas aeruginosa, establishing virulence and antibiotic resistance, as well as survival. The detailed structural and biochemical characterization of the EF-P-specific rhamnosyltransferase EarP from P. aeruginosa not only demonstrates that sugar donor TDP-Rha binding enhances acceptor EF-P binding to EarP but also should provide valuable information for the structure-guided development of its inhibitors against infections from P. aeruginosa and other EarP-containing pathogens.
Complex Structure of Pseudomonas aeruginosa Arginine Rhamnosyltransferase EarP with Its Acceptor Elongation Factor P.,He C, Liu N, Li F, Jia X, Peng H, Liu Y, Xiao Y J Bacteriol. 2019 Jun 10;201(13). pii: JB.00128-19. doi: 10.1128/JB.00128-19., Print 2019 Jul 1. PMID:31010899[3]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Rajkovic A, Erickson S, Witzky A, Branson OE, Seo J, Gafken PR, Frietas MA, Whitelegge JP, Faull KF, Navarre W, Darwin AJ, Ibba M. Cyclic Rhamnosylated Elongation Factor P Establishes Antibiotic Resistance in Pseudomonas aeruginosa. mBio. 2015 Jun 9;6(3):e00823. PMID:26060278 doi:10.1128/mBio.00823-15
- ↑ He C, Liu N, Li F, Jia X, Peng H, Liu Y, Xiao Y. Complex Structure of Pseudomonas aeruginosa Arginine Rhamnosyltransferase EarP with Its Acceptor Elongation Factor P. J Bacteriol. 2019 Jun 10;201(13). pii: JB.00128-19. doi: 10.1128/JB.00128-19., Print 2019 Jul 1. PMID:31010899 doi:http://dx.doi.org/10.1128/JB.00128-19
- ↑ He C, Liu N, Li F, Jia X, Peng H, Liu Y, Xiao Y. Complex Structure of Pseudomonas aeruginosa Arginine Rhamnosyltransferase EarP with Its Acceptor Elongation Factor P. J Bacteriol. 2019 Jun 10;201(13). pii: JB.00128-19. doi: 10.1128/JB.00128-19., Print 2019 Jul 1. PMID:31010899 doi:http://dx.doi.org/10.1128/JB.00128-19
|