|
|
Line 3: |
Line 3: |
| <StructureSection load='6lnp' size='340' side='right'caption='[[6lnp]], [[Resolution|resolution]] 2.99Å' scene=''> | | <StructureSection load='6lnp' size='340' side='right'caption='[[6lnp]], [[Resolution|resolution]] 2.99Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[6lnp]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/"bacillus_pneumoniae"_(schroeter_1886)_flugge_1886 "bacillus pneumoniae" (schroeter 1886) flugge 1886]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6LNP OCA]. For a <b>guided tour on the structure components</b> use [http://proteopedia.org/fgij/fg.htm?mol=6LNP FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[6lnp]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Aequorea_victoria Aequorea victoria] and [https://en.wikipedia.org/wiki/Klebsiella_pneumoniae Klebsiella pneumoniae]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6LNP OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6LNP FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CIT:CITRIC+ACID'>CIT</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.993Å</td></tr> |
- | <tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=CRO:{2-[(1R,2R)-1-AMINO-2-HYDROXYPROPYL]-4-(4-HYDROXYBENZYLIDENE)-5-OXO-4,5-DIHYDRO-1H-IMIDAZOL-1-YL}ACETIC+ACID'>CRO</scene></td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CIT:CITRIC+ACID'>CIT</scene>, <scene name='pdbligand=CRO:{2-[(1R,2R)-1-AMINO-2-HYDROXYPROPYL]-4-(4-HYDROXYBENZYLIDENE)-5-OXO-4,5-DIHYDRO-1H-IMIDAZOL-1-YL}ACETIC+ACID'>CRO</scene></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">citA ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=573 "Bacillus pneumoniae" (Schroeter 1886) Flugge 1886])</td></tr>
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6lnp FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6lnp OCA], [https://pdbe.org/6lnp PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6lnp RCSB], [https://www.ebi.ac.uk/pdbsum/6lnp PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6lnp ProSAT]</span></td></tr> |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Histidine_kinase Histidine kinase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.13.3 2.7.13.3] </span></td></tr>
| + | |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://proteopedia.org/fgij/fg.htm?mol=6lnp FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6lnp OCA], [http://pdbe.org/6lnp PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6lnp RCSB], [http://www.ebi.ac.uk/pdbsum/6lnp PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6lnp ProSAT]</span></td></tr> | + | |
| </table> | | </table> |
| + | == Function == |
| + | [https://www.uniprot.org/uniprot/CITA_KLEPN CITA_KLEPN] Member of the two-component regulatory system CitA/CitB. Probably activates CitB by phosphorylation. The periplasmic domain binds H-citrate(2-), which is essential for induction of the citrate-fermentation genes.<ref>PMID:10447894</ref> [https://www.uniprot.org/uniprot/GFP_AEQVI GFP_AEQVI] Energy-transfer acceptor. Its role is to transduce the blue chemiluminescence of the protein aequorin into green fluorescent light by energy transfer. Fluoresces in vivo upon receiving energy from the Ca(2+)-activated photoprotein aequorin. |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 19: |
Line 19: |
| </div> | | </div> |
| <div class="pdbe-citations 6lnp" style="background-color:#fffaf0;"></div> | | <div class="pdbe-citations 6lnp" style="background-color:#fffaf0;"></div> |
| + | |
| + | ==See Also== |
| + | *[[Green Fluorescent Protein 3D structures|Green Fluorescent Protein 3D structures]] |
| == References == | | == References == |
| <references/> | | <references/> |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Histidine kinase]] | + | [[Category: Aequorea victoria]] |
| + | [[Category: Klebsiella pneumoniae]] |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Campbell, R]] | + | [[Category: Campbell R]] |
- | [[Category: Wen, Y]] | + | [[Category: Wen Y]] |
- | [[Category: Biosensor]]
| + | |
- | [[Category: Citrate]]
| + | |
- | [[Category: Fluorescent protein]]
| + | |
- | [[Category: Genetically encoded]]
| + | |
| Structural highlights
Function
CITA_KLEPN Member of the two-component regulatory system CitA/CitB. Probably activates CitB by phosphorylation. The periplasmic domain binds H-citrate(2-), which is essential for induction of the citrate-fermentation genes.[1] GFP_AEQVI Energy-transfer acceptor. Its role is to transduce the blue chemiluminescence of the protein aequorin into green fluorescent light by energy transfer. Fluoresces in vivo upon receiving energy from the Ca(2+)-activated photoprotein aequorin.
Publication Abstract from PubMed
Motivated by the growing recognition of citrate as a central metabolite in a variety of biological processes associated with healthy and diseased cellular states, we have developed a series of high-performance genetically encoded citrate biosensors suitable for imaging of citrate concentrations in mammalian cells. The design of these biosensors was guided by structural studies of the citrate-responsive sensor histidine kinase and took advantage of the same conformational changes proposed to propagate from the binding domain to the catalytic domain. Following extensive engineering based on a combination of structure guided mutagenesis and directed evolution, we produced an inverse-response biosensor (DeltaF/F min approximately 18) designated Citroff1 and a direct-response biosensor (DeltaF/F min approximately 9) designated Citron1. We report the X-ray crystal structure of Citron1 and demonstrate the utility of both biosensors for qualitative and quantitative imaging of steady-state and pharmacologically perturbed citrate concentrations in live cells.
High-Performance Intensiometric Direct- and Inverse-Response Genetically Encoded Biosensors for Citrate.,Zhao Y, Shen Y, Wen Y, Campbell RE ACS Cent Sci. 2020 Aug 26;6(8):1441-1450. doi: 10.1021/acscentsci.0c00518. Epub, 2020 Jul 9. PMID:32875085[2]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Kaspar S, Perozzo R, Reinelt S, Meyer M, Pfister K, Scapozza L, Bott M. The periplasmic domain of the histidine autokinase CitA functions as a highly specific citrate receptor. Mol Microbiol. 1999 Aug;33(4):858-72. PMID:10447894
- ↑ Zhao Y, Shen Y, Wen Y, Campbell RE. High-Performance Intensiometric Direct- and Inverse-Response Genetically Encoded Biosensors for Citrate. ACS Cent Sci. 2020 Aug 26;6(8):1441-1450. doi: 10.1021/acscentsci.0c00518. Epub, 2020 Jul 9. PMID:32875085 doi:http://dx.doi.org/10.1021/acscentsci.0c00518
|