|
|
Line 3: |
Line 3: |
| <StructureSection load='5nsf' size='340' side='right'caption='[[5nsf]], [[Resolution|resolution]] 2.43Å' scene=''> | | <StructureSection load='5nsf' size='340' side='right'caption='[[5nsf]], [[Resolution|resolution]] 2.43Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[5nsf]] is a 4 chain structure with sequence from [http://en.wikipedia.org/wiki/Metja Metja]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5NSF OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5NSF FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[5nsf]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Methanocaldococcus_jannaschii_DSM_2661 Methanocaldococcus jannaschii DSM 2661]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5NSF OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=5NSF FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=96Z:(2~{S})-2-azanyl-3-(2,6-dihydroazulen-1-yl)propanoic+acid'>96Z</scene>, <scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=PG4:TETRAETHYLENE+GLYCOL'>PG4</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.426Å</td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">tyrS, MJ0389 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=243232 METJA])</td></tr>
| + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=96Z:(2~{S})-2-azanyl-3-(2,6-dihydroazulen-1-yl)propanoic+acid'>96Z</scene>, <scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=PG4:TETRAETHYLENE+GLYCOL'>PG4</scene></td></tr> |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Tyrosine--tRNA_ligase Tyrosine--tRNA ligase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=6.1.1.1 6.1.1.1] </span></td></tr>
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=5nsf FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5nsf OCA], [https://pdbe.org/5nsf PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=5nsf RCSB], [https://www.ebi.ac.uk/pdbsum/5nsf PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=5nsf ProSAT]</span></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5nsf FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5nsf OCA], [http://pdbe.org/5nsf PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5nsf RCSB], [http://www.ebi.ac.uk/pdbsum/5nsf PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5nsf ProSAT]</span></td></tr> | + | |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/SYY_METJA SYY_METJA]] Catalyzes the attachment of tyrosine to tRNA(Tyr) in a two-step reaction: tyrosine is first activated by ATP to form Tyr-AMP and then transferred to the acceptor end of tRNA(Tyr).<ref>PMID:10585437</ref> | + | [https://www.uniprot.org/uniprot/SYY_METJA SYY_METJA] Catalyzes the attachment of tyrosine to tRNA(Tyr) in a two-step reaction: tyrosine is first activated by ATP to form Tyr-AMP and then transferred to the acceptor end of tRNA(Tyr).<ref>PMID:10585437</ref> |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 28: |
Line 27: |
| </StructureSection> | | </StructureSection> |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Metja]] | + | [[Category: Methanocaldococcus jannaschii DSM 2661]] |
- | [[Category: Tyrosine--tRNA ligase]]
| + | [[Category: Martins BM]] |
- | [[Category: Martins, B M]] | + | |
- | [[Category: Ligase]]
| + | |
- | [[Category: Nnca]]
| + | |
| Structural highlights
Function
SYY_METJA Catalyzes the attachment of tyrosine to tRNA(Tyr) in a two-step reaction: tyrosine is first activated by ATP to form Tyr-AMP and then transferred to the acceptor end of tRNA(Tyr).[1]
Publication Abstract from PubMed
Allosteric information transfer in proteins has been linked to distinct vibrational energy transfer (VET) pathways in a number of theoretical studies. Experimental evidence for such pathways, however, is sparse because site-selective injection of vibrational energy into a protein, i.e. localized heating, is required for their investigation. Here, we solve this problem by the site-specific incorporation of the non-canonical amino acid beta (1 azulenyl) L alanine (AzAla) via genetic code expansion. Being an exception to Kasha s rule, AzAla undergoes ultrafast internal conversion and heating after S1 excitation. We endowed PDZ3, a protein interaction domain of postsynaptic density protein 95, with this ultrafast heater at two distinct positions. Using ultrafast IR spectroscopy, we could indeed observe VET from the incorporation sites in the protein to a bound peptide ligand on a picosecond timescale. This approach based on genetically encoded AzAla paves the way for detailed studies of VET and its role for function in a wide range of proteins.
Observation of Site-Resolved Vibrational Energy Transfer Using a Genetically Encoded Ultrafast Heater.,Baumann T, Hauf M, Schildhauer F, Eberl KB, Durkin PM, Deniz E, Loffler JG, Acevedo-Rocha CG, Jaric J, Martins BM, Dobbek H, Bredenbeck J, Budisa N Angew Chem Int Ed Engl. 2018 Dec 27. doi: 10.1002/anie.201812995. PMID:30589180[2]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Steer BA, Schimmel P. Major anticodon-binding region missing from an archaebacterial tRNA synthetase. J Biol Chem. 1999 Dec 10;274(50):35601-6. PMID:10585437
- ↑ Baumann T, Hauf M, Schildhauer F, Eberl KB, Durkin PM, Deniz E, Loffler JG, Acevedo-Rocha CG, Jaric J, Martins BM, Dobbek H, Bredenbeck J, Budisa N. Observation of Site-Resolved Vibrational Energy Transfer Using a Genetically Encoded Ultrafast Heater. Angew Chem Int Ed Engl. 2018 Dec 27. doi: 10.1002/anie.201812995. PMID:30589180 doi:http://dx.doi.org/10.1002/anie.201812995
|