7egs

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (16:53, 29 November 2023) (edit) (undo)
 
Line 1: Line 1:
-
====
+
==The crystal structure of lobe domain of E. coli RNA polymerase complexed with the C-terminal domain of UvrD==
-
<StructureSection load='7egs' size='340' side='right'caption='[[7egs]]' scene=''>
+
<StructureSection load='7egs' size='340' side='right'caption='[[7egs]], [[Resolution|resolution]] 1.70&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
-
<table><tr><td colspan='2'>Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id= OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol= FirstGlance]. <br>
+
<table><tr><td colspan='2'>[[7egs]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli_K-12 Escherichia coli K-12]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7EGS OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7EGS FirstGlance]. <br>
-
</td></tr><tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7egs FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7egs OCA], [https://pdbe.org/7egs PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7egs RCSB], [https://www.ebi.ac.uk/pdbsum/7egs PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7egs ProSAT]</span></td></tr>
+
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.7&#8491;</td></tr>
 +
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=GOL:GLYCEROL'>GOL</scene></td></tr>
 +
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7egs FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7egs OCA], [https://pdbe.org/7egs PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7egs RCSB], [https://www.ebi.ac.uk/pdbsum/7egs PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7egs ProSAT]</span></td></tr>
</table>
</table>
 +
== Function ==
 +
[https://www.uniprot.org/uniprot/RPOB_ECOLI RPOB_ECOLI] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates.[HAMAP-Rule:MF_01321]
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
Transcription-coupled DNA repair (TCR) is presumed to be a minor sub-pathway of nucleotide excision repair (NER) in bacteria. Global genomic repair is thought to perform the bulk of repair independently of transcription. TCR is also believed to be mediated exclusively by Mfd-a DNA translocase of a marginal NER phenotype(1-3). Here we combined in cellulo cross-linking mass spectrometry with structural, biochemical and genetic approaches to map the interactions within the TCR complex (TCRC) and to determine the actual sequence of events that leads to NER in vivo. We show that RNA polymerase (RNAP) serves as the primary sensor of DNA damage and acts as a platform for the recruitment of NER enzymes. UvrA and UvrD associate with RNAP continuously, forming a surveillance pre-TCRC. In response to DNA damage, pre-TCRC recruits a second UvrD monomer to form a helicase-competent UvrD dimer that promotes backtracking of the TCRC. The weakening of UvrD-RNAP interactions renders cells sensitive to genotoxic stress. TCRC then recruits a second UvrA molecule and UvrB to initiate the repair process. Contrary to the conventional view, we show that TCR accounts for the vast majority of chromosomal repair events; that is, TCR thoroughly dominates over global genomic repair. We also show that TCR is largely independent of Mfd. We propose that Mfd has an indirect role in this process: it participates in removing obstructive RNAPs in front of TCRCs and also in recovering TCRCs from backtracking after repair has been completed.
 +
 +
Crucial role and mechanism of transcription-coupled DNA repair in bacteria.,Bharati BK, Gowder M, Zheng F, Alzoubi K, Svetlov V, Kamarthapu V, Weaver JW, Epshtein V, Vasilyev N, Shen L, Zhang Y, Nudler E Nature. 2022 Apr;604(7904):152-159. doi: 10.1038/s41586-022-04530-6. Epub 2022 , Mar 30. PMID:35355008<ref>PMID:35355008</ref>
 +
 +
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 +
</div>
 +
<div class="pdbe-citations 7egs" style="background-color:#fffaf0;"></div>
 +
 +
==See Also==
 +
*[[Helicase 3D structures|Helicase 3D structures]]
 +
*[[RNA polymerase 3D structures|RNA polymerase 3D structures]]
 +
== References ==
 +
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>
 +
[[Category: Escherichia coli K-12]]
[[Category: Large Structures]]
[[Category: Large Structures]]
-
[[Category: Z-disk]]
+
[[Category: Li L]]
 +
[[Category: Shen L]]
 +
[[Category: Zhang Y]]
 +
[[Category: Zheng F]]

Current revision

The crystal structure of lobe domain of E. coli RNA polymerase complexed with the C-terminal domain of UvrD

PDB ID 7egs

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools