|
|
Line 3: |
Line 3: |
| <StructureSection load='2wj7' size='340' side='right'caption='[[2wj7]], [[Resolution|resolution]] 2.63Å' scene=''> | | <StructureSection load='2wj7' size='340' side='right'caption='[[2wj7]], [[Resolution|resolution]] 2.63Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[2wj7]] is a 5 chain structure with sequence from [https://en.wikipedia.org/wiki/Human Human]. The July 2010 RCSB PDB [https://pdb.rcsb.org/pdb/static.do?p=education_discussion/molecule_of_the_month/index.html Molecule of the Month] feature on ''Crystallins'' by David Goodsell is [https://dx.doi.org/10.2210/rcsb_pdb/mom_2010_7 10.2210/rcsb_pdb/mom_2010_7]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2WJ7 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2WJ7 FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[2wj7]] is a 5 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. The July 2010 RCSB PDB [https://pdb.rcsb.org/pdb/static.do?p=education_discussion/molecule_of_the_month/index.html Molecule of the Month] feature on ''Crystallins'' by David Goodsell is [https://dx.doi.org/10.2210/rcsb_pdb/mom_2010_7 10.2210/rcsb_pdb/mom_2010_7]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2WJ7 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2WJ7 FirstGlance]. <br> |
- | </td></tr><tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[2wj5|2wj5]]</div></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.631Å</td></tr> |
| <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2wj7 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2wj7 OCA], [https://pdbe.org/2wj7 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2wj7 RCSB], [https://www.ebi.ac.uk/pdbsum/2wj7 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2wj7 ProSAT]</span></td></tr> | | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2wj7 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2wj7 OCA], [https://pdbe.org/2wj7 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2wj7 RCSB], [https://www.ebi.ac.uk/pdbsum/2wj7 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2wj7 ProSAT]</span></td></tr> |
| </table> | | </table> |
| + | == Disease == |
| + | [https://www.uniprot.org/uniprot/CRYAB_HUMAN CRYAB_HUMAN] Posterior polar cataract;Alpha-crystallinopathy;Zonular cataract;Familial isolated dilated cardiomyopathy;Fatal infantile hypertonic myofibrillar myopathy. The disease is caused by mutations affecting the gene represented in this entry. The disease is caused by mutations affecting the gene represented in this entry. The disease is caused by mutations affecting the gene represented in this entry. The disease is caused by mutations affecting the gene represented in this entry. |
| + | == Function == |
| + | [https://www.uniprot.org/uniprot/CRYAB_HUMAN CRYAB_HUMAN] May contribute to the transparency and refractive index of the lens. Has chaperone-like activity, preventing aggregation of various proteins under a wide range of stress conditions. |
| == Evolutionary Conservation == | | == Evolutionary Conservation == |
| [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
Line 35: |
Line 39: |
| </StructureSection> | | </StructureSection> |
| [[Category: Crystallins]] | | [[Category: Crystallins]] |
- | [[Category: Human]] | + | [[Category: Homo sapiens]] |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
| [[Category: RCSB PDB Molecule of the Month]] | | [[Category: RCSB PDB Molecule of the Month]] |
- | [[Category: Bagneris, C]] | + | [[Category: Bagneris C]] |
- | [[Category: Bateman, O A]] | + | [[Category: Bateman OA]] |
- | [[Category: Cronin, N]] | + | [[Category: Cronin N]] |
- | [[Category: Keep, N H]] | + | [[Category: Keep NH]] |
- | [[Category: Naylor, C E]] | + | [[Category: Naylor CE]] |
- | [[Category: Slingsby, C]] | + | [[Category: Slingsby C]] |
- | [[Category: Acetylation]]
| + | |
- | [[Category: Cataract]]
| + | |
- | [[Category: Chaperone]]
| + | |
- | [[Category: Desmin-related myopathy]]
| + | |
- | [[Category: Disease mutation]]
| + | |
- | [[Category: Eye lens protein]]
| + | |
- | [[Category: Glycoprotein]]
| + | |
- | [[Category: Methylation]]
| + | |
- | [[Category: Oxidation]]
| + | |
- | [[Category: Phosphoprotein]]
| + | |
- | [[Category: Polymorphism]]
| + | |
| Structural highlights
Disease
CRYAB_HUMAN Posterior polar cataract;Alpha-crystallinopathy;Zonular cataract;Familial isolated dilated cardiomyopathy;Fatal infantile hypertonic myofibrillar myopathy. The disease is caused by mutations affecting the gene represented in this entry. The disease is caused by mutations affecting the gene represented in this entry. The disease is caused by mutations affecting the gene represented in this entry. The disease is caused by mutations affecting the gene represented in this entry.
Function
CRYAB_HUMAN May contribute to the transparency and refractive index of the lens. Has chaperone-like activity, preventing aggregation of various proteins under a wide range of stress conditions.
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
Small heat shock proteins (sHsps) are a family of large and dynamic oligomers highly expressed in long-lived cells of muscle, lens and brain. Several family members are upregulated during stress, and some are strongly cytoprotective. Their polydispersity has hindered high-resolution structure analyses, particularly for vertebrate sHsps. Here, crystal structures of excised alpha-crystallin domain from rat Hsp20 and that from human alphaB-crystallin show that they form homodimers with a shared groove at the interface by extending a beta sheet. However, the two dimers differ in the register of their interfaces. The dimers have empty pockets that in large assemblies will likely be filled by hydrophobic sequence motifs from partner chains. In the Hsp20 dimer, the shared groove is partially filled by peptide in polyproline II conformation. Structural homology with other sHsp crystal structures indicates that in full-length chains the groove is likely filled by an N-terminal extension. Inside the groove is a symmetry-related functionally important arginine that is mutated, or its equivalent, in family members in a range of neuromuscular diseases and cataract. Analyses of residues within the groove of the alphaB-crystallin interface show that it has a high density of positive charges. The disease mutant R120G alpha-crystallin domain dimer was found to be more stable at acidic pH, suggesting that the mutation affects the normal dynamics of sHsp assembly. The structures provide a starting point for modelling higher assembly by defining the spatial locations of grooves and pockets in a basic dimeric assembly unit. The structures provide a high-resolution view of a candidate functional state of an sHsp that could bind non-native client proteins or specific components from cytoprotective pathways. The empty pockets and groove provide a starting model for designing drugs to inhibit those sHsps that have a negative effect on cancer treatment.
Crystal structures of alpha-crystallin domain dimers of alphaB-crystallin and Hsp20.,Bagneris C, Bateman OA, Naylor CE, Cronin N, Boelens WC, Keep NH, Slingsby C J Mol Biol. 2009 Oct 9;392(5):1242-52. Epub 2009 Jul 30. PMID:19646995[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Bagneris C, Bateman OA, Naylor CE, Cronin N, Boelens WC, Keep NH, Slingsby C. Crystal structures of alpha-crystallin domain dimers of alphaB-crystallin and Hsp20. J Mol Biol. 2009 Oct 9;392(5):1242-52. Epub 2009 Jul 30. PMID:19646995 doi:10.1016/j.jmb.2009.07.069
|