|
|
Line 3: |
Line 3: |
| <StructureSection load='2wm1' size='340' side='right'caption='[[2wm1]], [[Resolution|resolution]] 2.01Å' scene=''> | | <StructureSection load='2wm1' size='340' side='right'caption='[[2wm1]], [[Resolution|resolution]] 2.01Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[2wm1]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2WM1 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2WM1 FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[2wm1]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2WM1 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2WM1 FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=13P:1,3-DIHYDROXYACETONEPHOSPHATE'>13P</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.01Å</td></tr> |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[https://en.wikipedia.org/wiki/Aminocarboxymuconate-semialdehyde_decarboxylase Aminocarboxymuconate-semialdehyde decarboxylase], with EC number [https://www.brenda-enzymes.info/php/result_flat.php4?ecno=4.1.1.45 4.1.1.45] </span></td></tr>
| + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=13P:1,3-DIHYDROXYACETONEPHOSPHATE'>13P</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> |
| <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2wm1 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2wm1 OCA], [https://pdbe.org/2wm1 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2wm1 RCSB], [https://www.ebi.ac.uk/pdbsum/2wm1 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2wm1 ProSAT]</span></td></tr> | | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2wm1 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2wm1 OCA], [https://pdbe.org/2wm1 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2wm1 RCSB], [https://www.ebi.ac.uk/pdbsum/2wm1 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2wm1 ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[https://www.uniprot.org/uniprot/ACMSD_HUMAN ACMSD_HUMAN]] Converts alpha-amino-beta-carboxymuconate-epsilon-semialdehyde (ACMS) to alpha-aminomuconate semialdehyde (AMS). ACMS can be converted non-enzymatically to quinolate (QA), a key precursor of NAD, and a potent endogenous excitotoxin of neuronal cells which is implicated in the pathogenesis of various neurodegenerative disorders. In the presence of ACMSD, ACMS is converted to AMS, a benign catabolite. ACMSD ultimately controls the metabolic fate of tryptophan catabolism along the kynurenine pathway.<ref>PMID:19843166</ref> <ref>PMID:12140278</ref>
| + | [https://www.uniprot.org/uniprot/ACMSD_HUMAN ACMSD_HUMAN] Converts alpha-amino-beta-carboxymuconate-epsilon-semialdehyde (ACMS) to alpha-aminomuconate semialdehyde (AMS). ACMS can be converted non-enzymatically to quinolate (QA), a key precursor of NAD, and a potent endogenous excitotoxin of neuronal cells which is implicated in the pathogenesis of various neurodegenerative disorders. In the presence of ACMSD, ACMS is converted to AMS, a benign catabolite. ACMSD ultimately controls the metabolic fate of tryptophan catabolism along the kynurenine pathway.<ref>PMID:19843166</ref> <ref>PMID:12140278</ref> |
| == Evolutionary Conservation == | | == Evolutionary Conservation == |
| [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
Line 33: |
Line 33: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Aminocarboxymuconate-semialdehyde decarboxylase]] | + | [[Category: Homo sapiens]] |
- | [[Category: Human]]
| + | |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Galeazzi, L]] | + | [[Category: Galeazzi L]] |
- | [[Category: Garavaglia, S]] | + | [[Category: Garavaglia S]] |
- | [[Category: Perozzi, S]] | + | [[Category: Perozzi S]] |
- | [[Category: Raffaelli, N]] | + | [[Category: Raffaelli N]] |
- | [[Category: Rizzi, M]] | + | [[Category: Rizzi M]] |
- | [[Category: Alternative splicing]]
| + | |
- | [[Category: Cerebral malaria]]
| + | |
- | [[Category: Decarboxylase]]
| + | |
- | [[Category: Kynurenine pathway]]
| + | |
- | [[Category: Lyase]]
| + | |
- | [[Category: Metal-dependent amidohydrolase]]
| + | |
- | [[Category: Nad biosynthesis]]
| + | |
- | [[Category: Neurological disorder]]
| + | |
- | [[Category: Phosphoprotein]]
| + | |
- | [[Category: Picolinic acid]]
| + | |
- | [[Category: Quinolinic acid]]
| + | |
| Structural highlights
Function
ACMSD_HUMAN Converts alpha-amino-beta-carboxymuconate-epsilon-semialdehyde (ACMS) to alpha-aminomuconate semialdehyde (AMS). ACMS can be converted non-enzymatically to quinolate (QA), a key precursor of NAD, and a potent endogenous excitotoxin of neuronal cells which is implicated in the pathogenesis of various neurodegenerative disorders. In the presence of ACMSD, ACMS is converted to AMS, a benign catabolite. ACMSD ultimately controls the metabolic fate of tryptophan catabolism along the kynurenine pathway.[1] [2]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
The enzyme alpha-amino-beta-carboxymuconate-epsilon-semialdehyde decarboxylase (ACMSD) is a zinc-dependent amidohydrolase that participates in picolinic acid (PA), quinolinic acid (QA) and NAD homeostasis. Indeed, the enzyme stands at a branch point of the tryptophan to NAD pathway, and determines the final fate of the amino acid, i.e. transformation into PA, complete oxidation through the citric acid cycle, or conversion into NAD through QA synthesis. Both PA and QA are key players in a number of physiological and pathological conditions, mainly affecting the central nervous system. As their relative concentrations must be tightly controlled, modulation of ACMSD activity appears to be a promising prospect for the treatment of neurological disorders, including cerebral malaria. Here we report the 2.0 A resolution crystal structure of human ACMSD in complex with the glycolytic intermediate 1,3-dihydroxyacetonephosphate (DHAP), refined to an R-factor of 0.19. DHAP, which we discovered to be a potent enzyme inhibitor, resides in the ligand binding pocket with its phosphate moiety contacting the catalytically essential zinc ion through mediation of a solvent molecule. Arg47, Asp291 and Trp191 appear to be the key residues for DHAP recognition in human ACMSD. Ligand binding induces a significant conformational change affecting a strictly conserved Trp-Met couple, and we propose that these residues are involved in controlling ligand admission into ACMSD. Our data may be used for the design of inhibitors with potential medical interest, and suggest a regulatory link between de novo NAD biosynthesis and glycolysis.
The crystal structure of human alpha-amino-beta-carboxymuconate-epsilon-semialdehyde decarboxylase in complex with 1,3-dihydroxyacetonephosphate suggests a regulatory link between NAD synthesis and glycolysis.,Garavaglia S, Perozzi S, Galeazzi L, Raffaelli N, Rizzi M FEBS J. 2009 Nov;276(22):6615-23. Epub 2009 Oct 16. PMID:19843166[3]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Garavaglia S, Perozzi S, Galeazzi L, Raffaelli N, Rizzi M. The crystal structure of human alpha-amino-beta-carboxymuconate-epsilon-semialdehyde decarboxylase in complex with 1,3-dihydroxyacetonephosphate suggests a regulatory link between NAD synthesis and glycolysis. FEBS J. 2009 Nov;276(22):6615-23. Epub 2009 Oct 16. PMID:19843166 doi:10.1111/j.1742-4658.2009.07372.x
- ↑ Fukuoka S, Ishiguro K, Yanagihara K, Tanabe A, Egashira Y, Sanada H, Shibata K. Identification and expression of a cDNA encoding human alpha-amino-beta-carboxymuconate-epsilon-semialdehyde decarboxylase (ACMSD). A key enzyme for the tryptophan-niacine pathway and "quinolinate hypothesis". J Biol Chem. 2002 Sep 20;277(38):35162-7. Epub 2002 Jul 24. PMID:12140278 doi:http://dx.doi.org/10.1074/jbc.M200819200
- ↑ Garavaglia S, Perozzi S, Galeazzi L, Raffaelli N, Rizzi M. The crystal structure of human alpha-amino-beta-carboxymuconate-epsilon-semialdehyde decarboxylase in complex with 1,3-dihydroxyacetonephosphate suggests a regulatory link between NAD synthesis and glycolysis. FEBS J. 2009 Nov;276(22):6615-23. Epub 2009 Oct 16. PMID:19843166 doi:10.1111/j.1742-4658.2009.07372.x
|