|
|
Line 3: |
Line 3: |
| <StructureSection load='2wpt' size='340' side='right'caption='[[2wpt]], [[Resolution|resolution]] 1.78Å' scene=''> | | <StructureSection load='2wpt' size='340' side='right'caption='[[2wpt]], [[Resolution|resolution]] 1.78Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[2wpt]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/"bacillus_coli"_migula_1895 "bacillus coli" migula 1895]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2WPT OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2WPT FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[2wpt]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2WPT OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2WPT FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=NO3:NITRATE+ION'>NO3</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.78Å</td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[2ivz|2ivz]], [[1v14|1v14]], [[2vlo|2vlo]], [[1fsj|1fsj]], [[2vlp|2vlp]], [[2vln|2vln]], [[1v15|1v15]], [[1bxi|1bxi]], [[1v13|1v13]], [[2vlq|2vlq]], [[1emv|1emv]], [[1fr2|1fr2]]</div></td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=NO3:NITRATE+ION'>NO3</scene></td></tr> |
| <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2wpt FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2wpt OCA], [https://pdbe.org/2wpt PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2wpt RCSB], [https://www.ebi.ac.uk/pdbsum/2wpt PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2wpt ProSAT]</span></td></tr> | | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2wpt FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2wpt OCA], [https://pdbe.org/2wpt PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2wpt RCSB], [https://www.ebi.ac.uk/pdbsum/2wpt PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2wpt ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[https://www.uniprot.org/uniprot/IMM2_ECOLX IMM2_ECOLX]] This protein is able to protect a cell, which harbors the plasmid ColE2 encoding colicin E2, against colicin E2.
| + | [https://www.uniprot.org/uniprot/IMM2_ECOLX IMM2_ECOLX] This protein is able to protect a cell, which harbors the plasmid ColE2 encoding colicin E2, against colicin E2. |
| == Evolutionary Conservation == | | == Evolutionary Conservation == |
| [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
Line 37: |
Line 37: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Bacillus coli migula 1895]] | + | [[Category: Escherichia coli]] |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Baker, D]] | + | [[Category: Baker D]] |
- | [[Category: Boetzel, R]] | + | [[Category: Boetzel R]] |
- | [[Category: Fleishman, S J]] | + | [[Category: Fleishman SJ]] |
- | [[Category: Kleanthous, C]] | + | [[Category: Kleanthous C]] |
- | [[Category: Macdonald, C J]] | + | [[Category: Macdonald CJ]] |
- | [[Category: Meenan, N A]] | + | [[Category: Meenan NA]] |
- | [[Category: Moore, G R]] | + | [[Category: Moore GR]] |
- | [[Category: Sharma, A]] | + | [[Category: Sharma A]] |
- | [[Category: Antibiotic]]
| + | |
- | [[Category: Antimicrobial]]
| + | |
- | [[Category: Bacteriocin immunity]]
| + | |
- | [[Category: Endonuclease]]
| + | |
- | [[Category: Hydrolase]]
| + | |
- | [[Category: Immune system]]
| + | |
- | [[Category: Nuclease]]
| + | |
| Structural highlights
Function
IMM2_ECOLX This protein is able to protect a cell, which harbors the plasmid ColE2 encoding colicin E2, against colicin E2.
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
High-affinity, high-selectivity protein-protein interactions that are critical for cell survival present an evolutionary paradox: How does selectivity evolve when acquired mutations risk a lethal loss of high-affinity binding? A detailed understanding of selectivity in such complexes requires structural information on weak, noncognate complexes which can be difficult to obtain due to their transient and dynamic nature. Using NMR-based docking as a guide, we deployed a disulfide-trapping strategy on a noncognate complex between the colicin E9 endonuclease (E9 DNase) and immunity protein 2 (Im2), which is seven orders of magnitude weaker binding than the cognate femtomolar E9 DNase-Im9 interaction. The 1.77 A crystal structure of the E9 DNase-Im2 complex reveals an entirely noncovalent interface where the intersubunit disulfide merely supports the crystal lattice. In combination with computational alanine scanning of interfacial residues, the structure reveals that the driving force for binding is so strong that a severely unfavorable specificity contact is tolerated at the interface and as a result the complex becomes weakened through "frustration." As well as rationalizing past mutational and thermodynamic data, comparing our noncognate structure with previous cognate complexes highlights the importance of loop regions in developing selectivity and accentuates the multiple roles of buried water molecules that stabilize, ameliorate, or aggravate interfacial contacts. The study provides direct support for dual-recognition in colicin DNase-Im protein complexes and shows that weakened noncognate complexes are primed for high-affinity binding, which can be achieved by economical mutation of a limited number of residues at the interface.
The structural and energetic basis for high selectivity in a high-affinity protein-protein interaction.,Meenan NA, Sharma A, Fleishman SJ, Macdonald CJ, Morel B, Boetzel R, Moore GR, Baker D, Kleanthous C Proc Natl Acad Sci U S A. 2010 May 17. PMID:20479265[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Meenan NA, Sharma A, Fleishman SJ, Macdonald CJ, Morel B, Boetzel R, Moore GR, Baker D, Kleanthous C. The structural and energetic basis for high selectivity in a high-affinity protein-protein interaction. Proc Natl Acad Sci U S A. 2010 May 17. PMID:20479265
|