|
|
Line 3: |
Line 3: |
| <StructureSection load='3zlz' size='340' side='right'caption='[[3zlz]], [[Resolution|resolution]] 2.90Å' scene=''> | | <StructureSection load='3zlz' size='340' side='right'caption='[[3zlz]], [[Resolution|resolution]] 2.90Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[3zlz]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3ZLZ OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3ZLZ FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[3zlz]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3ZLZ OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3ZLZ FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.9Å</td></tr> |
| + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> |
| <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3zlz FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3zlz OCA], [https://pdbe.org/3zlz PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3zlz RCSB], [https://www.ebi.ac.uk/pdbsum/3zlz PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3zlz ProSAT]</span></td></tr> | | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3zlz FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3zlz OCA], [https://pdbe.org/3zlz PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3zlz RCSB], [https://www.ebi.ac.uk/pdbsum/3zlz PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3zlz ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[https://www.uniprot.org/uniprot/UBB_HUMAN UBB_HUMAN]] Ubiquitin exists either covalently attached to another protein, or free (unanchored). When covalently bound, it is conjugated to target proteins via an isopeptide bond either as a monomer (monoubiquitin), a polymer linked via different Lys residues of the ubiquitin (polyubiquitin chains) or a linear polymer linked via the initiator Met of the ubiquitin (linear polyubiquitin chains). Polyubiquitin chains, when attached to a target protein, have different functions depending on the Lys residue of the ubiquitin that is linked: Lys-6-linked may be involved in DNA repair; Lys-11-linked is involved in ERAD (endoplasmic reticulum-associated degradation) and in cell-cycle regulation; Lys-29-linked is involved in lysosomal degradation; Lys-33-linked is involved in kinase modification; Lys-48-linked is involved in protein degradation via the proteasome; Lys-63-linked is involved in endocytosis, DNA-damage responses as well as in signaling processes leading to activation of the transcription factor NF-kappa-B. Linear polymer chains formed via attachment by the initiator Met lead to cell signaling. Ubiquitin is usually conjugated to Lys residues of target proteins, however, in rare cases, conjugation to Cys or Ser residues has been observed. When polyubiquitin is free (unanchored-polyubiquitin), it also has distinct roles, such as in activation of protein kinases, and in signaling.<ref>PMID:16543144</ref> <ref>PMID:19754430</ref>
| + | [https://www.uniprot.org/uniprot/UBB_HUMAN UBB_HUMAN] Ubiquitin exists either covalently attached to another protein, or free (unanchored). When covalently bound, it is conjugated to target proteins via an isopeptide bond either as a monomer (monoubiquitin), a polymer linked via different Lys residues of the ubiquitin (polyubiquitin chains) or a linear polymer linked via the initiator Met of the ubiquitin (linear polyubiquitin chains). Polyubiquitin chains, when attached to a target protein, have different functions depending on the Lys residue of the ubiquitin that is linked: Lys-6-linked may be involved in DNA repair; Lys-11-linked is involved in ERAD (endoplasmic reticulum-associated degradation) and in cell-cycle regulation; Lys-29-linked is involved in lysosomal degradation; Lys-33-linked is involved in kinase modification; Lys-48-linked is involved in protein degradation via the proteasome; Lys-63-linked is involved in endocytosis, DNA-damage responses as well as in signaling processes leading to activation of the transcription factor NF-kappa-B. Linear polymer chains formed via attachment by the initiator Met lead to cell signaling. Ubiquitin is usually conjugated to Lys residues of target proteins, however, in rare cases, conjugation to Cys or Ser residues has been observed. When polyubiquitin is free (unanchored-polyubiquitin), it also has distinct roles, such as in activation of protein kinases, and in signaling.<ref>PMID:16543144</ref> <ref>PMID:19754430</ref> |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 25: |
Line 26: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Human]] | + | [[Category: Homo sapiens]] |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Freund, S M.V]] | + | [[Category: Freund SMV]] |
- | [[Category: Hospenthal, M K]] | + | [[Category: Hospenthal MK]] |
- | [[Category: Komander, D]] | + | [[Category: Komander D]] |
- | [[Category: Atypical chain type]]
| + | |
- | [[Category: Bacterial effector]]
| + | |
- | [[Category: Deubiquitinase]]
| + | |
- | [[Category: Nlel]]
| + | |
- | [[Category: Signaling protein]]
| + | |
| Structural highlights
Function
UBB_HUMAN Ubiquitin exists either covalently attached to another protein, or free (unanchored). When covalently bound, it is conjugated to target proteins via an isopeptide bond either as a monomer (monoubiquitin), a polymer linked via different Lys residues of the ubiquitin (polyubiquitin chains) or a linear polymer linked via the initiator Met of the ubiquitin (linear polyubiquitin chains). Polyubiquitin chains, when attached to a target protein, have different functions depending on the Lys residue of the ubiquitin that is linked: Lys-6-linked may be involved in DNA repair; Lys-11-linked is involved in ERAD (endoplasmic reticulum-associated degradation) and in cell-cycle regulation; Lys-29-linked is involved in lysosomal degradation; Lys-33-linked is involved in kinase modification; Lys-48-linked is involved in protein degradation via the proteasome; Lys-63-linked is involved in endocytosis, DNA-damage responses as well as in signaling processes leading to activation of the transcription factor NF-kappa-B. Linear polymer chains formed via attachment by the initiator Met lead to cell signaling. Ubiquitin is usually conjugated to Lys residues of target proteins, however, in rare cases, conjugation to Cys or Ser residues has been observed. When polyubiquitin is free (unanchored-polyubiquitin), it also has distinct roles, such as in activation of protein kinases, and in signaling.[1] [2]
Publication Abstract from PubMed
Ubiquitin (Ub) chains regulate many cellular processes, but several chain types including Lys6 linkages have remained unstudied. Here we analyze the bacterial effector E3 ligase NleL (non-Lee-encoded effector ligase) from enterohemorrhagic Escherichia coli (EHEC) O157:H7, which assembles Lys6- and Lys48-linked Ub polymers. Using linkage-specific human deubiquitinases (DUBs) we show that NleL generates heterotypic Ub chains, and branched chains are efficiently hydrolyzed by DUBs. USP family DUBs cleave Lys6-linked polymers exclusively from the distal end, whereas a DUB with preference for Lys6 can cleave Lys6-linked polymers at any position in the chain. We used NleL to generate large quantities of Lys6-linked polyUb. Crystallographic and NMR spectroscopy analyses revealed that an asymmetric interface between Ile44 and Ile36 hydrophobic patches of neighboring Ub moieties is propagated in longer Lys6-linked Ub chains. Interactions via the Ile36 patch can displace Leu8 from the Ile44 patch, leading to marked structural perturbations of Ub.
Assembly, analysis and architecture of atypical ubiquitin chains.,Hospenthal MK, Freund SM, Komander D Nat Struct Mol Biol. 2013 Apr 7. doi: 10.1038/nsmb.2547. PMID:23563141[3]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Huang F, Kirkpatrick D, Jiang X, Gygi S, Sorkin A. Differential regulation of EGF receptor internalization and degradation by multiubiquitination within the kinase domain. Mol Cell. 2006 Mar 17;21(6):737-48. PMID:16543144 doi:S1097-2765(06)00120-1
- ↑ Komander D. The emerging complexity of protein ubiquitination. Biochem Soc Trans. 2009 Oct;37(Pt 5):937-53. doi: 10.1042/BST0370937. PMID:19754430 doi:10.1042/BST0370937
- ↑ Hospenthal MK, Freund SM, Komander D. Assembly, analysis and architecture of atypical ubiquitin chains. Nat Struct Mol Biol. 2013 Apr 7. doi: 10.1038/nsmb.2547. PMID:23563141 doi:10.1038/nsmb.2547
|