|
|
| Line 3: |
Line 3: |
| | <StructureSection load='4ap0' size='340' side='right'caption='[[4ap0]], [[Resolution|resolution]] 2.59Å' scene=''> | | <StructureSection load='4ap0' size='340' side='right'caption='[[4ap0]], [[Resolution|resolution]] 2.59Å' scene=''> |
| | == Structural highlights == | | == Structural highlights == |
| - | <table><tr><td colspan='2'>[[4ap0]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4AP0 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4AP0 FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[4ap0]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4AP0 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4AP0 FirstGlance]. <br> |
| - | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ADP:ADENOSINE-5-DIPHOSPHATE'>ADP</scene>, <scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=G7X:ISPINESIB+MESILATE'>G7X</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.594Å</td></tr> |
| - | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[1ii6|1ii6]], [[1q0b|1q0b]], [[1x88|1x88]], [[1yrs|1yrs]], [[2fky|2fky]], [[2fl2|2fl2]], [[2fl6|2fl6]], [[2g1q|2g1q]], [[2gm1|2gm1]], [[2uyi|2uyi]], [[2uym|2uym]], [[2wog|2wog]], [[2x2r|2x2r]], [[2x7c|2x7c]], [[2x7d|2x7d]], [[2x7e|2x7e]], [[2xae|2xae]], [[4a1z|4a1z]], [[4a28|4a28]], [[4a2t|4a2t]], [[4a50|4a50]], [[4a51|4a51]], [[4a5y|4a5y]]</div></td></tr>
| + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ADP:ADENOSINE-5-DIPHOSPHATE'>ADP</scene>, <scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=G7X:ISPINESIB+MESILATE'>G7X</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr> |
| | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4ap0 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4ap0 OCA], [https://pdbe.org/4ap0 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4ap0 RCSB], [https://www.ebi.ac.uk/pdbsum/4ap0 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4ap0 ProSAT]</span></td></tr> | | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4ap0 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4ap0 OCA], [https://pdbe.org/4ap0 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4ap0 RCSB], [https://www.ebi.ac.uk/pdbsum/4ap0 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4ap0 ProSAT]</span></td></tr> |
| | </table> | | </table> |
| | == Disease == | | == Disease == |
| - | [[https://www.uniprot.org/uniprot/KIF11_HUMAN KIF11_HUMAN]] Defects in KIF11 are the cause of microcephaly with or without chorioretinopathy, lymphedema, or mental retardation (MCLMR) [MIM:[https://omim.org/entry/152950 152950]]. An autosomal dominant disorder that involves an overlapping but variable spectrum of central nervous system and ocular developmental anomalies. Microcephaly ranges from mild to severe and is often associated with mild to moderate developmental delay and a characteristic facial phenotype with upslanting palpebral fissures, broad nose with rounded tip, long philtrum with thin upper lip, prominent chin, and prominent ears. Chorioretinopathy is the most common eye abnormality, but retinal folds, microphthalmia, and myopic and hypermetropic astigmatism have also been reported, and some individuals have no overt ocular phenotype. Congenital lymphedema, when present, is typically confined to the dorsa of the feet, and lymphoscintigraphy reveals the absence of radioactive isotope uptake from the webspaces between the toes.<ref>PMID:22284827</ref>
| + | [https://www.uniprot.org/uniprot/KIF11_HUMAN KIF11_HUMAN] Defects in KIF11 are the cause of microcephaly with or without chorioretinopathy, lymphedema, or mental retardation (MCLMR) [MIM:[https://omim.org/entry/152950 152950]. An autosomal dominant disorder that involves an overlapping but variable spectrum of central nervous system and ocular developmental anomalies. Microcephaly ranges from mild to severe and is often associated with mild to moderate developmental delay and a characteristic facial phenotype with upslanting palpebral fissures, broad nose with rounded tip, long philtrum with thin upper lip, prominent chin, and prominent ears. Chorioretinopathy is the most common eye abnormality, but retinal folds, microphthalmia, and myopic and hypermetropic astigmatism have also been reported, and some individuals have no overt ocular phenotype. Congenital lymphedema, when present, is typically confined to the dorsa of the feet, and lymphoscintigraphy reveals the absence of radioactive isotope uptake from the webspaces between the toes.<ref>PMID:22284827</ref> |
| | == Function == | | == Function == |
| - | [[https://www.uniprot.org/uniprot/KIF11_HUMAN KIF11_HUMAN]] Motor protein required for establishing a bipolar spindle. Blocking of KIF11 prevents centrosome migration and arrest cells in mitosis with monoastral microtubule arrays.<ref>PMID:19001501</ref>
| + | [https://www.uniprot.org/uniprot/KIF11_HUMAN KIF11_HUMAN] Motor protein required for establishing a bipolar spindle. Blocking of KIF11 prevents centrosome migration and arrest cells in mitosis with monoastral microtubule arrays.<ref>PMID:19001501</ref> |
| | <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| | == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
| Line 28: |
Line 28: |
| | __TOC__ | | __TOC__ |
| | </StructureSection> | | </StructureSection> |
| - | [[Category: Human]] | + | [[Category: Homo sapiens]] |
| | [[Category: Large Structures]] | | [[Category: Large Structures]] |
| - | [[Category: Kozielski, F]] | + | [[Category: Kozielski F]] |
| - | [[Category: Schuettelkopf, A W]] | + | [[Category: Schuettelkopf AW]] |
| - | [[Category: Talapatra, S K]] | + | [[Category: Talapatra SK]] |
| - | [[Category: Motor protein]]
| + | |
| Structural highlights
Disease
KIF11_HUMAN Defects in KIF11 are the cause of microcephaly with or without chorioretinopathy, lymphedema, or mental retardation (MCLMR) [MIM:152950. An autosomal dominant disorder that involves an overlapping but variable spectrum of central nervous system and ocular developmental anomalies. Microcephaly ranges from mild to severe and is often associated with mild to moderate developmental delay and a characteristic facial phenotype with upslanting palpebral fissures, broad nose with rounded tip, long philtrum with thin upper lip, prominent chin, and prominent ears. Chorioretinopathy is the most common eye abnormality, but retinal folds, microphthalmia, and myopic and hypermetropic astigmatism have also been reported, and some individuals have no overt ocular phenotype. Congenital lymphedema, when present, is typically confined to the dorsa of the feet, and lymphoscintigraphy reveals the absence of radioactive isotope uptake from the webspaces between the toes.[1]
Function
KIF11_HUMAN Motor protein required for establishing a bipolar spindle. Blocking of KIF11 prevents centrosome migration and arrest cells in mitosis with monoastral microtubule arrays.[2]
Publication Abstract from PubMed
The human kinesin Eg5 is responsible for bipolar spindle formation during early mitosis. Inhibition of Eg5 triggers the formation of monoastral spindles, leading to mitotic arrest that eventually causes apoptosis. There is increasing evidence that Eg5 constitutes a potential drug target for the development of cancer chemotherapeutics. The most advanced Eg5-targeting agent is ispinesib, which exhibits potent antitumour activity and is currently in multiple phase II clinical trials. In this study, the crystal structure of the Eg5 motor domain in complex with ispinesib, supported by kinetic and thermodynamic binding data, is reported. Ispinesib occupies the same induced-fit pocket in Eg5 as other allosteric inhibitors, making extensive hydrophobic interactions with the protein. The data for the Eg5-ADP-ispinesib complex suffered from pseudo-merohedral twinning and revealed translational noncrystallographic symmetry, leading to challenges in data processing, space-group assignment and structure solution as well as in refinement. These complications may explain the lack of available structural information for this important agent and its analogues. The present structure represents the best interpretation of these data based on extensive data-reduction, structure-solution and refinement trials.
The structure of the ternary Eg5-ADP-ispinesib complex.,Talapatra SK, Schuttelkopf AW, Kozielski F Acta Crystallogr D Biol Crystallogr. 2012 Oct;68(Pt 10):1311-9. Epub 2012 Sep 13. PMID:22993085[3]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Ostergaard P, Simpson MA, Mendola A, Vasudevan P, Connell FC, van Impel A, Moore AT, Loeys BL, Ghalamkarpour A, Onoufriadis A, Martinez-Corral I, Devery S, Leroy JG, van Laer L, Singer A, Bialer MG, McEntagart M, Quarrell O, Brice G, Trembath RC, Schulte-Merker S, Makinen T, Vikkula M, Mortimer PS, Mansour S, Jeffery S. Mutations in KIF11 cause autosomal-dominant microcephaly variably associated with congenital lymphedema and chorioretinopathy. Am J Hum Genet. 2012 Feb 10;90(2):356-62. doi: 10.1016/j.ajhg.2011.12.018. Epub, 2012 Jan 26. PMID:22284827 doi:10.1016/j.ajhg.2011.12.018
- ↑ Rapley J, Nicolas M, Groen A, Regue L, Bertran MT, Caelles C, Avruch J, Roig J. The NIMA-family kinase Nek6 phosphorylates the kinesin Eg5 at a novel site necessary for mitotic spindle formation. J Cell Sci. 2008 Dec 1;121(Pt 23):3912-21. doi: 10.1242/jcs.035360. Epub 2008 Nov, 11. PMID:19001501 doi:10.1242/jcs.035360
- ↑ Talapatra SK, Schuttelkopf AW, Kozielski F. The structure of the ternary Eg5-ADP-ispinesib complex. Acta Crystallogr D Biol Crystallogr. 2012 Oct;68(Pt 10):1311-9. Epub 2012 Sep 13. PMID:22993085 doi:http://dx.doi.org/10.1107/S0907444912027965
|