|
|
Line 3: |
Line 3: |
| <StructureSection load='4aph' size='340' side='right'caption='[[4aph]], [[Resolution|resolution]] 1.99Å' scene=''> | | <StructureSection load='4aph' size='340' side='right'caption='[[4aph]], [[Resolution|resolution]] 1.99Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[4aph]] is a 2 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4APH OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4APH FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[4aph]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4APH OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4APH FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ACT:ACETATE+ION'>ACT</scene>, <scene name='pdbligand=BMA:BETA-D-MANNOSE'>BMA</scene>, <scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=NAG:N-ACETYL-D-GLUCOSAMINE'>NAG</scene>, <scene name='pdbligand=PE4:2-{2-[2-(2-{2-[2-(2-ETHOXY-ETHOXY)-ETHOXY]-ETHOXY}-ETHOXY)-ETHOXY]-ETHOXY}-ETHANOL'>PE4</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.99Å</td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[1o86|1o86]], [[1o8a|1o8a]], [[1uze|1uze]], [[1uzf|1uzf]], [[2c6f|2c6f]], [[2c6n|2c6n]], [[2iul|2iul]], [[2iux|2iux]], [[2wxw|2wxw]], [[2x0b|2x0b]], [[2xy9|2xy9]], [[2xyd|2xyd]], [[2ydm|2ydm]], [[4aa1|4aa1]], [[4apj|4apj]]</div></td></tr>
| + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ACT:ACETATE+ION'>ACT</scene>, <scene name='pdbligand=BMA:BETA-D-MANNOSE'>BMA</scene>, <scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=NAG:N-ACETYL-D-GLUCOSAMINE'>NAG</scene>, <scene name='pdbligand=PE4:2-{2-[2-(2-{2-[2-(2-ETHOXY-ETHOXY)-ETHOXY]-ETHOXY}-ETHOXY)-ETHOXY]-ETHOXY}-ETHANOL'>PE4</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> |
| <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4aph FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4aph OCA], [https://pdbe.org/4aph PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4aph RCSB], [https://www.ebi.ac.uk/pdbsum/4aph PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4aph ProSAT]</span></td></tr> | | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4aph FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4aph OCA], [https://pdbe.org/4aph PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4aph RCSB], [https://www.ebi.ac.uk/pdbsum/4aph PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4aph ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Disease == | | == Disease == |
- | [[https://www.uniprot.org/uniprot/ACE_HUMAN ACE_HUMAN]] Genetic variations in ACE may be a cause of susceptibility to ischemic stroke (ISCHSTR) [MIM:[https://omim.org/entry/601367 601367]]; also known as cerebrovascular accident or cerebral infarction. A stroke is an acute neurologic event leading to death of neural tissue of the brain and resulting in loss of motor, sensory and/or cognitive function. Ischemic strokes, resulting from vascular occlusion, is considered to be a highly complex disease consisting of a group of heterogeneous disorders with multiple genetic and environmental risk factors.<ref>PMID:15534175</ref> Defects in ACE are a cause of renal tubular dysgenesis (RTD) [MIM:[https://omim.org/entry/267430 267430]]. RTD is an autosomal recessive severe disorder of renal tubular development characterized by persistent fetal anuria and perinatal death, probably due to pulmonary hypoplasia from early-onset oligohydramnios (the Potter phenotype).<ref>PMID:16116425</ref> Genetic variations in ACE are associated with susceptibility to microvascular complications of diabetes type 3 (MVCD3) [MIM:[https://omim.org/entry/612624 612624]]. These are pathological conditions that develop in numerous tissues and organs as a consequence of diabetes mellitus. They include diabetic retinopathy, diabetic nephropathy leading to end-stage renal disease, and diabetic neuropathy. Diabetic retinopathy remains the major cause of new-onset blindness among diabetic adults. It is characterized by vascular permeability and increased tissue ischemia and angiogenesis. Defects in ACE are a cause of susceptibility to intracerebral hemorrhage (ICH) [MIM:[https://omim.org/entry/614519 614519]]. A pathological condition characterized by bleeding into one or both cerebral hemispheres including the basal ganglia and the cerebral cortex. It is often associated with hypertension and craniocerebral trauma. Intracerebral bleeding is a common cause of stroke.<ref>PMID:15277638</ref> [[https://www.uniprot.org/uniprot/ANGT_HUMAN ANGT_HUMAN]] Genetic variations in AGT are a cause of susceptibility to essential hypertension (EHT) [MIM:[https://omim.org/entry/145500 145500]]. Essential hypertension is a condition in which blood pressure is consistently higher than normal with no identifiable cause. Defects in AGT are a cause of renal tubular dysgenesis (RTD) [MIM:[https://omim.org/entry/267430 267430]]. RTD is an autosomal recessive severe disorder of renal tubular development characterized by persistent fetal anuria and perinatal death, probably due to pulmonary hypoplasia from early-onset oligohydramnios (the Potter phenotype).<ref>PMID:16116425</ref>
| + | [https://www.uniprot.org/uniprot/ACE_HUMAN ACE_HUMAN] Genetic variations in ACE may be a cause of susceptibility to ischemic stroke (ISCHSTR) [MIM:[https://omim.org/entry/601367 601367]; also known as cerebrovascular accident or cerebral infarction. A stroke is an acute neurologic event leading to death of neural tissue of the brain and resulting in loss of motor, sensory and/or cognitive function. Ischemic strokes, resulting from vascular occlusion, is considered to be a highly complex disease consisting of a group of heterogeneous disorders with multiple genetic and environmental risk factors.<ref>PMID:15534175</ref> Defects in ACE are a cause of renal tubular dysgenesis (RTD) [MIM:[https://omim.org/entry/267430 267430]. RTD is an autosomal recessive severe disorder of renal tubular development characterized by persistent fetal anuria and perinatal death, probably due to pulmonary hypoplasia from early-onset oligohydramnios (the Potter phenotype).<ref>PMID:16116425</ref> Genetic variations in ACE are associated with susceptibility to microvascular complications of diabetes type 3 (MVCD3) [MIM:[https://omim.org/entry/612624 612624]. These are pathological conditions that develop in numerous tissues and organs as a consequence of diabetes mellitus. They include diabetic retinopathy, diabetic nephropathy leading to end-stage renal disease, and diabetic neuropathy. Diabetic retinopathy remains the major cause of new-onset blindness among diabetic adults. It is characterized by vascular permeability and increased tissue ischemia and angiogenesis. Defects in ACE are a cause of susceptibility to intracerebral hemorrhage (ICH) [MIM:[https://omim.org/entry/614519 614519]. A pathological condition characterized by bleeding into one or both cerebral hemispheres including the basal ganglia and the cerebral cortex. It is often associated with hypertension and craniocerebral trauma. Intracerebral bleeding is a common cause of stroke.<ref>PMID:15277638</ref> |
| == Function == | | == Function == |
- | [[https://www.uniprot.org/uniprot/ACE_HUMAN ACE_HUMAN]] Converts angiotensin I to angiotensin II by release of the terminal His-Leu, this results in an increase of the vasoconstrictor activity of angiotensin. Also able to inactivate bradykinin, a potent vasodilator. Has also a glycosidase activity which releases GPI-anchored proteins from the membrane by cleaving the mannose linkage in the GPI moiety. [[https://www.uniprot.org/uniprot/ANGT_HUMAN ANGT_HUMAN]] Essential component of the renin-angiotensin system (RAS), a potent regulator of blood pressure, body fluid and electrolyte homeostasis.<ref>PMID:1132082</ref> <ref>PMID:10619573</ref> <ref>PMID:17138938</ref> Angiotensin-2: acts directly on vascular smooth muscle as a potent vasoconstrictor, affects cardiac contractility and heart rate through its action on the sympathetic nervous system, and alters renal sodium and water absorption through its ability to stimulate the zona glomerulosa cells of the adrenal cortex to synthesize and secrete aldosterone.<ref>PMID:1132082</ref> <ref>PMID:10619573</ref> <ref>PMID:17138938</ref> Angiotensin-3: stimulates aldosterone release.<ref>PMID:1132082</ref> <ref>PMID:10619573</ref> <ref>PMID:17138938</ref> Angiotensin 1-7: is a ligand for the G-protein coupled receptor MAS1 (By similarity). Has vasodilator and antidiuretic effects (By similarity). Has an antithrombotic effect that involves MAS1-mediated release of nitric oxide from platelets (By similarity).<ref>PMID:1132082</ref> <ref>PMID:10619573</ref> <ref>PMID:17138938</ref>
| + | [https://www.uniprot.org/uniprot/ACE_HUMAN ACE_HUMAN] Converts angiotensin I to angiotensin II by release of the terminal His-Leu, this results in an increase of the vasoconstrictor activity of angiotensin. Also able to inactivate bradykinin, a potent vasodilator. Has also a glycosidase activity which releases GPI-anchored proteins from the membrane by cleaving the mannose linkage in the GPI moiety. |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 28: |
Line 28: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
| + | [[Category: Homo sapiens]] |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Acharya, K R]] | + | [[Category: Acharya KR]] |
- | [[Category: Isaac, R E]] | + | [[Category: Isaac RE]] |
- | [[Category: Masuyer, G]] | + | [[Category: Masuyer G]] |
- | [[Category: Schwager, S L.U]] | + | [[Category: Schwager SLU]] |
- | [[Category: Sturrock, E D]] | + | [[Category: Sturrock ED]] |
- | [[Category: Hydrolase-hormone complex]]
| + | |
- | [[Category: Metallopeptidase]]
| + | |
- | [[Category: Zinc metalloprotease]]
| + | |
| Structural highlights
4aph is a 2 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
| Method: | X-ray diffraction, Resolution 1.99Å |
Ligands: | , , , , , |
Resources: | FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT |
Disease
ACE_HUMAN Genetic variations in ACE may be a cause of susceptibility to ischemic stroke (ISCHSTR) [MIM:601367; also known as cerebrovascular accident or cerebral infarction. A stroke is an acute neurologic event leading to death of neural tissue of the brain and resulting in loss of motor, sensory and/or cognitive function. Ischemic strokes, resulting from vascular occlusion, is considered to be a highly complex disease consisting of a group of heterogeneous disorders with multiple genetic and environmental risk factors.[1] Defects in ACE are a cause of renal tubular dysgenesis (RTD) [MIM:267430. RTD is an autosomal recessive severe disorder of renal tubular development characterized by persistent fetal anuria and perinatal death, probably due to pulmonary hypoplasia from early-onset oligohydramnios (the Potter phenotype).[2] Genetic variations in ACE are associated with susceptibility to microvascular complications of diabetes type 3 (MVCD3) [MIM:612624. These are pathological conditions that develop in numerous tissues and organs as a consequence of diabetes mellitus. They include diabetic retinopathy, diabetic nephropathy leading to end-stage renal disease, and diabetic neuropathy. Diabetic retinopathy remains the major cause of new-onset blindness among diabetic adults. It is characterized by vascular permeability and increased tissue ischemia and angiogenesis. Defects in ACE are a cause of susceptibility to intracerebral hemorrhage (ICH) [MIM:614519. A pathological condition characterized by bleeding into one or both cerebral hemispheres including the basal ganglia and the cerebral cortex. It is often associated with hypertension and craniocerebral trauma. Intracerebral bleeding is a common cause of stroke.[3]
Function
ACE_HUMAN Converts angiotensin I to angiotensin II by release of the terminal His-Leu, this results in an increase of the vasoconstrictor activity of angiotensin. Also able to inactivate bradykinin, a potent vasodilator. Has also a glycosidase activity which releases GPI-anchored proteins from the membrane by cleaving the mannose linkage in the GPI moiety.
Publication Abstract from PubMed
Angiotensin-I converting enzyme (ACE), a two-domain dipeptidylcarboxypeptidase, is a key regulator of blood pressure as a result of its critical role in the renin-angiotensin-aldosterone and kallikrein-kinin systems. Hence it is an important drug target in the treatment of cardiovascular diseases. ACE is primarily known for its ability to cleave angiotensin I (Ang I) to the vasoactive octapeptide angiotensin II (Ang II), but is also able to cleave a number of other substrates including the vasodilator bradykinin and N-acetyl-Ser-Asp-Lys-Pro (Ac-SDKP), a physiological modulator of hematopoiesis. For the first time we provide a detailed biochemical and structural basis for the domain selectivity of the natural peptide inhibitors of ACE, bradykinin potentiating peptide b and Ang II. Moreover, Ang II showed selective competitive inhibition of the carboxy-terminal domain of human somatic ACE providing evidence for a regulatory role in the human renin-angiotensin system (RAS).
Molecular recognition and regulation of human angiotensin-I converting enzyme (ACE) activity by natural inhibitory peptides.,Masuyer G, Schwager SL, Sturrock ED, Isaac RE, Acharya KR Sci Rep. 2012;2:717. doi: 10.1038/srep00717. Epub 2012 Oct 9. PMID:23056909[4]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Casas JP, Hingorani AD, Bautista LE, Sharma P. Meta-analysis of genetic studies in ischemic stroke: thirty-two genes involving approximately 18,000 cases and 58,000 controls. Arch Neurol. 2004 Nov;61(11):1652-61. PMID:15534175 doi:61/11/1652
- ↑ Gribouval O, Gonzales M, Neuhaus T, Aziza J, Bieth E, Laurent N, Bouton JM, Feuillet F, Makni S, Ben Amar H, Laube G, Delezoide AL, Bouvier R, Dijoud F, Ollagnon-Roman E, Roume J, Joubert M, Antignac C, Gubler MC. Mutations in genes in the renin-angiotensin system are associated with autosomal recessive renal tubular dysgenesis. Nat Genet. 2005 Sep;37(9):964-8. Epub 2005 Aug 14. PMID:16116425 doi:ng1623
- ↑ Slowik A, Turaj W, Dziedzic T, Haefele A, Pera J, Malecki MT, Glodzik-Sobanska L, Szermer P, Figlewicz DA, Szczudlik A. DD genotype of ACE gene is a risk factor for intracerebral hemorrhage. Neurology. 2004 Jul 27;63(2):359-61. PMID:15277638
- ↑ Masuyer G, Schwager SL, Sturrock ED, Isaac RE, Acharya KR. Molecular recognition and regulation of human angiotensin-I converting enzyme (ACE) activity by natural inhibitory peptides. Sci Rep. 2012;2:717. doi: 10.1038/srep00717. Epub 2012 Oct 9. PMID:23056909 doi:http://dx.doi.org/10.1038/srep00717
|