|
|
Line 3: |
Line 3: |
| <StructureSection load='4aza' size='340' side='right'caption='[[4aza]], [[Resolution|resolution]] 2.16Å' scene=''> | | <StructureSection load='4aza' size='340' side='right'caption='[[4aza]], [[Resolution|resolution]] 2.16Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[4aza]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4AZA OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4AZA FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[4aza]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4AZA OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4AZA FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=MGO:[[(2R,3S,4R,5R)-5-(6-AMINO-3-METHYL-4-OXO-5H-IMIDAZO[4,5-C]PYRIDIN-1-YL)-3,4-DIHYDROXY-OXOLAN-2-YL]METHOXY-HYDROXY-PHOSPHORYL]+PHOSPHONO+HYDROGEN+PHOSPHATE'>MGO</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.16Å</td></tr> |
- | <tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=ACE:ACETYL+GROUP'>ACE</scene>, <scene name='pdbligand=NH2:AMINO+GROUP'>NH2</scene></td></tr>
| + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ACE:ACETYL+GROUP'>ACE</scene>, <scene name='pdbligand=MGO:[[(2R,3S,4R,5R)-5-(6-AMINO-3-METHYL-4-OXO-5H-IMIDAZO[4,5-C]PYRIDIN-1-YL)-3,4-DIHYDROXY-OXOLAN-2-YL]METHOXY-HYDROXY-PHOSPHORYL]+PHOSPHONO+HYDROGEN+PHOSPHATE'>MGO</scene>, <scene name='pdbligand=NH2:AMINO+GROUP'>NH2</scene></td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[1ipb|1ipb]], [[1ipc|1ipc]], [[2v8w|2v8w]], [[2v8x|2v8x]], [[2v8y|2v8y]], [[2w97|2w97]]</div></td></tr>
| + | |
| <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4aza FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4aza OCA], [https://pdbe.org/4aza PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4aza RCSB], [https://www.ebi.ac.uk/pdbsum/4aza PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4aza ProSAT]</span></td></tr> | | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4aza FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4aza OCA], [https://pdbe.org/4aza PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4aza RCSB], [https://www.ebi.ac.uk/pdbsum/4aza PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4aza ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[https://www.uniprot.org/uniprot/IF4E_HUMAN IF4E_HUMAN]] Its translation stimulation activity is repressed by binding to the complex CYFIP1-FMR1 (By similarity). Recognizes and binds the 7-methylguanosine-containing mRNA cap during an early step in the initiation of protein synthesis and facilitates ribosome binding by inducing the unwinding of the mRNAs secondary structures. Component of the CYFIP1-EIF4E-FMR1 complex which binds to the mRNA cap and mediates translational repression. In the CYFIP1-EIF4E-FMR1 complex this subunit mediates the binding to the mRNA cap.<ref>PMID:16271312</ref>
| + | [https://www.uniprot.org/uniprot/IF4E_HUMAN IF4E_HUMAN] Its translation stimulation activity is repressed by binding to the complex CYFIP1-FMR1 (By similarity). Recognizes and binds the 7-methylguanosine-containing mRNA cap during an early step in the initiation of protein synthesis and facilitates ribosome binding by inducing the unwinding of the mRNAs secondary structures. Component of the CYFIP1-EIF4E-FMR1 complex which binds to the mRNA cap and mediates translational repression. In the CYFIP1-EIF4E-FMR1 complex this subunit mediates the binding to the mRNA cap.<ref>PMID:16271312</ref> |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 27: |
Line 26: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Human]] | + | [[Category: Homo sapiens]] |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Brown, C J]] | + | [[Category: Brown CJ]] |
- | [[Category: Chew, W Z]] | + | [[Category: Chew WZ]] |
- | [[Category: Lane, D P]] | + | [[Category: Lane DP]] |
- | [[Category: Liu, Y]] | + | [[Category: Liu Y]] |
- | [[Category: Quah, S T]] | + | [[Category: Quah ST]] |
- | [[Category: Verma, C S]] | + | [[Category: Verma CS]] |
- | [[Category: Translation]]
| + | |
| Structural highlights
Function
IF4E_HUMAN Its translation stimulation activity is repressed by binding to the complex CYFIP1-FMR1 (By similarity). Recognizes and binds the 7-methylguanosine-containing mRNA cap during an early step in the initiation of protein synthesis and facilitates ribosome binding by inducing the unwinding of the mRNAs secondary structures. Component of the CYFIP1-EIF4E-FMR1 complex which binds to the mRNA cap and mediates translational repression. In the CYFIP1-EIF4E-FMR1 complex this subunit mediates the binding to the mRNA cap.[1]
Publication Abstract from PubMed
Eukaryotic initiation factor (eIF)4E is over-expressed in many types of cancer such as breast, head and neck, and lung. A consequence of increased levels of eIF4E is the preferential translation of pro-tumorigenic proteins (e.g. c-Myc and vascular endothelial growth factor) and as a result is regarded as a potential therapeutic target. In this work a novel phage display peptide has been isolated against eIF4E. From the phage sequence two amino acids were delineated which improved binding when substituted into the eIF4G1 sequence. Neither of these substitutions were involved in direct interactions with eIF4E and acted either via optimization of the helical capping motif or restricting the conformational flexibility of the peptide. In contrast, substitutions of the remaining phage derived amino acids into the eIF4G1 sequence disrupted binding of the peptide to eIF4E. Interestingly when some of these disruptive substitutions were combined with key mutations from the phage peptide, they lead to improved affinities. Atomistic computer simulations revealed that the phage and the eIF4G1 derivative peptide sequences differ subtly in their interaction sites on eIF4E. This raises the issue, especially in the context of planar interaction sites such as those exhibited by eIF4E, that given the intricate plasticity of protein surfaces, the construction of structure-activity relationships should account for the possibility of significant movement in the spatial positioning of the peptide binding interface, including significant librational motions of the peptide.
Improved eIF4E binding peptides by phage display guided design: plasticity of interacting surfaces yield collective effects.,Zhou W, Quah ST, Verma CS, Liu Y, Lane DP, Brown CJ PLoS One. 2012;7(10):e47235. doi: 10.1371/journal.pone.0047235. Epub 2012 Oct 19. PMID:23094039[2]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Tomoo K, Matsushita Y, Fujisaki H, Abiko F, Shen X, Taniguchi T, Miyagawa H, Kitamura K, Miura K, Ishida T. Structural basis for mRNA Cap-Binding regulation of eukaryotic initiation factor 4E by 4E-binding protein, studied by spectroscopic, X-ray crystal structural, and molecular dynamics simulation methods. Biochim Biophys Acta. 2005 Dec 1;1753(2):191-208. Epub 2005 Aug 24. PMID:16271312 doi:10.1016/j.bbapap.2005.07.023
- ↑ Zhou W, Quah ST, Verma CS, Liu Y, Lane DP, Brown CJ. Improved eIF4E binding peptides by phage display guided design: plasticity of interacting surfaces yield collective effects. PLoS One. 2012;7(10):e47235. doi: 10.1371/journal.pone.0047235. Epub 2012 Oct 19. PMID:23094039 doi:http://dx.doi.org/10.1371/journal.pone.0047235
|