|
|
Line 3: |
Line 3: |
| <StructureSection load='1uev' size='340' side='right'caption='[[1uev]], [[Resolution|resolution]] 2.70Å' scene=''> | | <StructureSection load='1uev' size='340' side='right'caption='[[1uev]], [[Resolution|resolution]] 2.70Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[1uev]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Arcfl Arcfl]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1UEV OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1UEV FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[1uev]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Archaeoglobus_fulgidus Archaeoglobus fulgidus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1UEV OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1UEV FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ATP:ADENOSINE-5-TRIPHOSPHATE'>ATP</scene>, <scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.7Å</td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[1uet|1uet]], [[1ueu|1ueu]]</div></td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ATP:ADENOSINE-5-TRIPHOSPHATE'>ATP</scene>, <scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr> |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[https://en.wikipedia.org/wiki/CCA_tRNA_nucleotidyltransferase CCA tRNA nucleotidyltransferase], with EC number [https://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.7.72 2.7.7.72] </span></td></tr>
| + | |
| <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1uev FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1uev OCA], [https://pdbe.org/1uev PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1uev RCSB], [https://www.ebi.ac.uk/pdbsum/1uev PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1uev ProSAT], [https://www.topsan.org/Proteins/RSGI/1uev TOPSAN]</span></td></tr> | | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1uev FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1uev OCA], [https://pdbe.org/1uev PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1uev RCSB], [https://www.ebi.ac.uk/pdbsum/1uev PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1uev ProSAT], [https://www.topsan.org/Proteins/RSGI/1uev TOPSAN]</span></td></tr> |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[https://www.uniprot.org/uniprot/CCA_ARCFU CCA_ARCFU]] Catalyzes the addition and repair of the essential 3'-terminal CCA sequence in tRNAs without using a nucleic acid template. Adds these three nucleotides in the order of C, C, and A to the tRNA nucleotide-73, using CTP and ATP as substrates and producing inorganic pyrophosphate.<ref>PMID:14592988</ref>
| + | [https://www.uniprot.org/uniprot/CCA_ARCFU CCA_ARCFU] Catalyzes the addition and repair of the essential 3'-terminal CCA sequence in tRNAs without using a nucleic acid template. Adds these three nucleotides in the order of C, C, and A to the tRNA nucleotide-73, using CTP and ATP as substrates and producing inorganic pyrophosphate.<ref>PMID:14592988</ref> |
| == Evolutionary Conservation == | | == Evolutionary Conservation == |
| [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
Line 37: |
Line 36: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Arcfl]] | + | [[Category: Archaeoglobus fulgidus]] |
- | [[Category: CCA tRNA nucleotidyltransferase]]
| + | |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Nureki, O]] | + | [[Category: Nureki O]] |
- | [[Category: Structural genomic]]
| + | |
- | [[Category: Rsgi]]
| + | |
- | [[Category: Transferase]]
| + | |
| Structural highlights
Function
CCA_ARCFU Catalyzes the addition and repair of the essential 3'-terminal CCA sequence in tRNAs without using a nucleic acid template. Adds these three nucleotides in the order of C, C, and A to the tRNA nucleotide-73, using CTP and ATP as substrates and producing inorganic pyrophosphate.[1]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
CCA-adding enzyme [ATP(CTP):tRNA nucleotidyltransferase], a template-independent RNA polymerase, adds the defined 'cytidine-cytidine-adenosine' sequence onto the 3' end of tRNA. The archaeal CCA-adding enzyme (class I) and eubacterial/eukaryotic CCA-adding enzyme (class II) show little amino acid sequence homology, but catalyze the same reaction in a defined fashion. Here, we present the crystal structures of the class I archaeal CCA-adding enzyme from Archaeoglobus fulgidus, and its complexes with CTP and ATP at 2.0, 2.0 and 2.7 A resolutions, respectively. The geometry of the catalytic carboxylates and the relative positions of CTP and ATP to a single catalytic site are well conserved in both classes of CCA-adding enzymes, whereas the overall architectures, except for the catalytic core, of the class I and class II CCA-adding enzymes are fundamentally different. Furthermore, the recognition mechanisms of substrate nucleotides and tRNA molecules are distinct between these two classes, suggesting that the catalytic domains of class I and class II enzymes share a common origin, and distinct substrate recognition domains have been appended to form the two presently divergent classes.
Divergent evolutions of trinucleotide polymerization revealed by an archaeal CCA-adding enzyme structure.,Okabe M, Tomita K, Ishitani R, Ishii R, Takeuchi N, Arisaka F, Nureki O, Yokoyama S EMBO J. 2003 Nov 3;22(21):5918-27. PMID:14592988[2]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Okabe M, Tomita K, Ishitani R, Ishii R, Takeuchi N, Arisaka F, Nureki O, Yokoyama S. Divergent evolutions of trinucleotide polymerization revealed by an archaeal CCA-adding enzyme structure. EMBO J. 2003 Nov 3;22(21):5918-27. PMID:14592988 doi:http://dx.doi.org/10.1093/emboj/cdg563
- ↑ Okabe M, Tomita K, Ishitani R, Ishii R, Takeuchi N, Arisaka F, Nureki O, Yokoyama S. Divergent evolutions of trinucleotide polymerization revealed by an archaeal CCA-adding enzyme structure. EMBO J. 2003 Nov 3;22(21):5918-27. PMID:14592988 doi:http://dx.doi.org/10.1093/emboj/cdg563
|