|
|
Line 3: |
Line 3: |
| <StructureSection load='2nti' size='340' side='right'caption='[[2nti]], [[Resolution|resolution]] 2.50Å' scene=''> | | <StructureSection load='2nti' size='340' side='right'caption='[[2nti]], [[Resolution|resolution]] 2.50Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[2nti]] is a 9 chain structure with sequence from [https://en.wikipedia.org/wiki/Sacs2 Sacs2]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2NTI OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2NTI FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[2nti]] is a 9 chain structure with sequence from [https://en.wikipedia.org/wiki/Saccharolobus_solfataricus_P2 Saccharolobus solfataricus P2]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2NTI OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2NTI FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=7PG:2,5,8,11,14,17,20,23-OCTAOXAPENTACOSAN-25-OL'>7PG</scene>, <scene name='pdbligand=BR:BROMIDE+ION'>BR</scene>, <scene name='pdbligand=K:POTASSIUM+ION'>K</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.5Å</td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[2ixj|2ixj]], [[2izo|2izo]], [[2ix2|2ix2]], [[2io4|2io4]]</div></td></tr>
| + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=7PG:2,5,8,11,14,17,20,23-OCTAOXAPENTACOSAN-25-OL'>7PG</scene>, <scene name='pdbligand=BR:BROMIDE+ION'>BR</scene>, <scene name='pdbligand=K:POTASSIUM+ION'>K</scene></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">pcnB, pcnA-2 ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=273057 SACS2]), pcnC, pcnA-2 ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=273057 SACS2]), pcnA, pcnA-1 ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=273057 SACS2])</td></tr>
| + | |
| <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2nti FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2nti OCA], [https://pdbe.org/2nti PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2nti RCSB], [https://www.ebi.ac.uk/pdbsum/2nti PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2nti ProSAT]</span></td></tr> | | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2nti FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2nti OCA], [https://pdbe.org/2nti PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2nti RCSB], [https://www.ebi.ac.uk/pdbsum/2nti PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2nti ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[https://www.uniprot.org/uniprot/PCNA2_SULSO PCNA2_SULSO]] Sliding clamp subunit. Responsible for tethering the catalytic subunit of DNA polymerase to DNA during high-speed replication. [[https://www.uniprot.org/uniprot/PCNA1_SULSO PCNA1_SULSO]] Sliding clamp subunit. Responsible for tethering the catalytic subunit of DNA polymerase to DNA during high-speed replication. [[https://www.uniprot.org/uniprot/PCNA3_SULSO PCNA3_SULSO]] Sliding clamp subunit. Responsible for tethering the catalytic subunit of DNA polymerase to DNA during high-speed replication (By similarity).
| + | [https://www.uniprot.org/uniprot/PCNA1_SACS2 PCNA1_SACS2] One of the sliding clamp subunits that acts as a moving platform for DNA processing. Responsible for tethering the catalytic subunit of DNA polymerase to DNA during high-speed replication. Heterotrimer stimulates the Holliday junction resolvase Hjc. DNA polymerase I, DNA ligase and the flap endonuclease may be constitutively associated with the PCNA heterotrimer forming a scanning complex able to couple DNA synthesis and Okazaki fragment maturation.<ref>PMID:12535540</ref> <ref>PMID:17011573</ref> |
| == Evolutionary Conservation == | | == Evolutionary Conservation == |
| [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
Line 38: |
Line 37: |
| </StructureSection> | | </StructureSection> |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Sacs2]] | + | [[Category: Saccharolobus solfataricus P2]] |
- | [[Category: Hlinkova, V]] | + | [[Category: Hlinkova V]] |
- | [[Category: Ling, H]] | + | [[Category: Ling H]] |
- | [[Category: Dna binding protein]]
| + | |
- | [[Category: Pcna12 heterodimer]]
| + | |
- | [[Category: Pcna123 heterotrimer]]
| + | |
- | [[Category: Protein-protein interaction]]
| + | |
| Structural highlights
Function
PCNA1_SACS2 One of the sliding clamp subunits that acts as a moving platform for DNA processing. Responsible for tethering the catalytic subunit of DNA polymerase to DNA during high-speed replication. Heterotrimer stimulates the Holliday junction resolvase Hjc. DNA polymerase I, DNA ligase and the flap endonuclease may be constitutively associated with the PCNA heterotrimer forming a scanning complex able to couple DNA synthesis and Okazaki fragment maturation.[1] [2]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
DNA sliding clamps form an oligomeric ring encircling DNA and serve as a moving platform for DNA-processing proteins. The opening and closing of a sliding-clamp ring is essential to load the clamp onto DNA in order to perform its functions. The molecular details of how clamp rings open and enclose DNA are still not clear. Three PCNA homologues have been found in Sulfolobus solfataricus which form a heterotrimer. Taking advantage of their hetero-oligomeric nature, the structures of the PCNAs in monomeric PCNA3, dimeric PCNA1-PCNA2 and trimeric PCNA1-PCNA2-PCNA3 forms were determined at resolutions of 2.6-1.9 A. The distinct oligomeric structures represent different stages in ring formation, which were verified in solution by ultracentrifugation analysis. The heterodimer opens in a V-shape of 130 degrees , while the heterotrimers form a ring with a 120 degrees rotation between monomers. The association of a rigid PCNA3 monomer with an opened PCNA1-PCNA2 heterodimer closes the ring and introduces a spring tension in the PCNA1-PCNA2 interface, thus bending the nine-stranded intermolecular beta-sheet to fit the 120 degrees rotation. The release of the spring tension as PCNA3 dissociates from the ring may facilitate ring opening. The structural features in different assemblies present a molecular model for clamp ring assembly and opening.
Structures of monomeric, dimeric and trimeric PCNA: PCNA-ring assembly and opening.,Hlinkova V, Xing G, Bauer J, Shin YJ, Dionne I, Rajashankar KR, Bell SD, Ling H Acta Crystallogr D Biol Crystallogr. 2008 Sep;64(Pt 9):941-9. Epub 2008, Aug 13. PMID:18703842[3]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Dionne I, Nookala RK, Jackson SP, Doherty AJ, Bell SD. A heterotrimeric PCNA in the hyperthermophilic archaeon Sulfolobus solfataricus. Mol Cell. 2003 Jan;11(1):275-82. PMID:12535540 doi:10.1016/s1097-2765(02)00824-9
- ↑ Dorazi R, Parker JL, White MF. PCNA activates the Holliday junction endonuclease Hjc. J Mol Biol. 2006 Dec 1;364(3):243-7. Epub 2006 Sep 9. PMID:17011573 doi:http://dx.doi.org/10.1016/j.jmb.2006.09.011
- ↑ Hlinkova V, Xing G, Bauer J, Shin YJ, Dionne I, Rajashankar KR, Bell SD, Ling H. Structures of monomeric, dimeric and trimeric PCNA: PCNA-ring assembly and opening. Acta Crystallogr D Biol Crystallogr. 2008 Sep;64(Pt 9):941-9. Epub 2008, Aug 13. PMID:18703842 doi:10.1107/S0907444908021665
|