|
|
| Line 1: |
Line 1: |
| | | | |
| | ==Crystal structure of an engineered monomeric CLC-ec1 Cl-/H+ transporter== | | ==Crystal structure of an engineered monomeric CLC-ec1 Cl-/H+ transporter== |
| - | <StructureSection load='3nmo' size='340' side='right' caption='[[3nmo]], [[Resolution|resolution]] 3.10Å' scene=''> | + | <StructureSection load='3nmo' size='340' side='right'caption='[[3nmo]], [[Resolution|resolution]] 3.10Å' scene=''> |
| | == Structural highlights == | | == Structural highlights == |
| - | <table><tr><td colspan='2'>[[3nmo]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Eaec_042 Eaec 042]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3NMO OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3NMO FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[3nmo]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli_042 Escherichia coli 042]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3NMO OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3NMO FirstGlance]. <br> |
| - | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 3.1Å</td></tr> |
| - | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">clcA ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=216592 EAEC 042])</td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene></td></tr> |
| - | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3nmo FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3nmo OCA], [http://pdbe.org/3nmo PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=3nmo RCSB], [http://www.ebi.ac.uk/pdbsum/3nmo PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=3nmo ProSAT]</span></td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3nmo FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3nmo OCA], [https://pdbe.org/3nmo PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3nmo RCSB], [https://www.ebi.ac.uk/pdbsum/3nmo PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3nmo ProSAT]</span></td></tr> |
| | </table> | | </table> |
| | == Function == | | == Function == |
| - | [[http://www.uniprot.org/uniprot/CLCA_ECOLI CLCA_ECOLI]] Proton-coupled chloride transporter. Functions as antiport system and exchanges two chloride ions for 1 proton. Probably acts as an electrical shunt for an outwardly-directed proton pump that is linked to amino acid decarboxylation, as part of the extreme acid resistance (XAR) response.<ref>PMID:12384697</ref> <ref>PMID:14985752</ref> <ref>PMID:16341087</ref> <ref>PMID:16905147</ref> <ref>PMID:18678918</ref> | + | [https://www.uniprot.org/uniprot/CLCA_ECOLI CLCA_ECOLI] Proton-coupled chloride transporter. Functions as antiport system and exchanges two chloride ions for 1 proton. Probably acts as an electrical shunt for an outwardly-directed proton pump that is linked to amino acid decarboxylation, as part of the extreme acid resistance (XAR) response.<ref>PMID:12384697</ref> <ref>PMID:14985752</ref> <ref>PMID:16341087</ref> <ref>PMID:16905147</ref> <ref>PMID:18678918</ref> |
| | == Evolutionary Conservation == | | == Evolutionary Conservation == |
| | [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
| Line 33: |
Line 33: |
| | __TOC__ | | __TOC__ |
| | </StructureSection> | | </StructureSection> |
| - | [[Category: Eaec 042]] | + | [[Category: Escherichia coli 042]] |
| - | [[Category: Kolmakova-Partensky, L]] | + | [[Category: Large Structures]] |
| - | [[Category: Miller, C]] | + | [[Category: Kolmakova-Partensky L]] |
| - | [[Category: Robertson, J L]]
| + | [[Category: Miller C]] |
| - | [[Category: Chloride-proton antiport]] | + | [[Category: Robertson JL]] |
| - | [[Category: Clc transporter]] | + | |
| - | [[Category: Transport protein]]
| + | |
| Structural highlights
Function
CLCA_ECOLI Proton-coupled chloride transporter. Functions as antiport system and exchanges two chloride ions for 1 proton. Probably acts as an electrical shunt for an outwardly-directed proton pump that is linked to amino acid decarboxylation, as part of the extreme acid resistance (XAR) response.[1] [2] [3] [4] [5]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
Channels and transporters of the ClC family cause the transmembrane movement of inorganic anions in service of a variety of biological tasks, from the unusual-the generation of the kilowatt pulses with which electric fish stun their prey-to the quotidian-the acidification of endosomes, vacuoles and lysosomes. The homodimeric architecture of ClC proteins, initially inferred from single-molecule studies of an elasmobranch Cl(-) channel and later confirmed by crystal structures of bacterial Cl(-)/H(+) antiporters, is apparently universal. Moreover, the basic machinery that enables ion movement through these proteins-the aqueous pores for anion diffusion in the channels and the ion-coupling chambers that coordinate Cl(-) and H(+) antiport in the transporters-are contained wholly within each subunit of the homodimer. The near-normal function of a bacterial ClC transporter straitjacketed by covalent crosslinks across the dimer interface and the behaviour of a concatemeric human homologue argue that the transport cycle resides within each subunit and does not require rigid-body rearrangements between subunits. However, this evidence is only inferential, and because examples are known in which quaternary rearrangements of extramembrane ClC domains that contribute to dimerization modulate transport activity, we cannot declare as definitive a 'parallel-pathways' picture in which the homodimer consists of two single-subunit transporters operating independently. A strong prediction of such a view is that it should in principle be possible to obtain a monomeric ClC. Here we exploit the known structure of a ClC Cl(-)/H(+) exchanger, ClC-ec1 from Escherichia coli, to design mutants that destabilize the dimer interface while preserving both the structure and the transport function of individual subunits. The results demonstrate that the ClC subunit alone is the basic functional unit for transport and that cross-subunit interaction is not required for Cl(-)/H(+) exchange in ClC transporters.
Design, function and structure of a monomeric ClC transporter.,Robertson JL, Kolmakova-Partensky L, Miller C Nature. 2010 Dec 9;468(7325):844-7. Epub 2010 Nov 3. PMID:21048711[6]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Iyer R, Iverson TM, Accardi A, Miller C. A biological role for prokaryotic ClC chloride channels. Nature. 2002 Oct 17;419(6908):715-8. PMID:12384697 doi:10.1038/nature01000
- ↑ Accardi A, Miller C. Secondary active transport mediated by a prokaryotic homologue of ClC Cl- channels. Nature. 2004 Feb 26;427(6977):803-7. PMID:14985752 doi:10.1038/nature02314
- ↑ Lobet S, Dutzler R. Ion-binding properties of the ClC chloride selectivity filter. EMBO J. 2006 Jan 11;25(1):24-33. Epub 2005 Dec 8. PMID:16341087
- ↑ Nguitragool W, Miller C. Uncoupling of a CLC Cl-/H+ exchange transporter by polyatomic anions. J Mol Biol. 2006 Sep 29;362(4):682-90. Epub 2006 Aug 14. PMID:16905147 doi:10.1016/j.jmb.2006.07.006
- ↑ Jayaram H, Accardi A, Wu F, Williams C, Miller C. Ion permeation through a Cl--selective channel designed from a CLC Cl-/H+ exchanger. Proc Natl Acad Sci U S A. 2008 Aug 12;105(32):11194-9. Epub 2008 Aug 4. PMID:18678918
- ↑ Robertson JL, Kolmakova-Partensky L, Miller C. Design, function and structure of a monomeric ClC transporter. Nature. 2010 Dec 9;468(7325):844-7. Epub 2010 Nov 3. PMID:21048711 doi:10.1038/nature09556
|