6q6c
From Proteopedia
(Difference between revisions)
Line 3: | Line 3: | ||
<StructureSection load='6q6c' size='340' side='right'caption='[[6q6c]], [[Resolution|resolution]] 1.30Å' scene=''> | <StructureSection load='6q6c' size='340' side='right'caption='[[6q6c]], [[Resolution|resolution]] 1.30Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
- | <table><tr><td colspan='2'>[[6q6c]] is a 2 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6Q6C OCA]. For a <b>guided tour on the structure components</b> use [ | + | <table><tr><td colspan='2'>[[6q6c]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Conus_striatus Conus striatus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6Q6C OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6Q6C FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=EDO:1,2-ETHANEDIOL'>EDO</scene>, <scene name='pdbligand=NO3:NITRATE+ION'>NO3</scene>, <scene name='pdbligand=PO4:PHOSPHATE+ION'>PO4</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.3Å</td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[ | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=EDO:1,2-ETHANEDIOL'>EDO</scene>, <scene name='pdbligand=NO3:NITRATE+ION'>NO3</scene>, <scene name='pdbligand=PO4:PHOSPHATE+ION'>PO4</scene></td></tr> |
+ | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6q6c FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6q6c OCA], [https://pdbe.org/6q6c PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6q6c RCSB], [https://www.ebi.ac.uk/pdbsum/6q6c PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6q6c ProSAT]</span></td></tr> | ||
</table> | </table> | ||
== Function == | == Function == | ||
- | [ | + | [https://www.uniprot.org/uniprot/VKTS1_CONST VKTS1_CONST] Blocks specifically voltage-activated potassium channels (Kv) of the Shaker family (IC(50)=1.33 nM).<ref>PMID:15833744</ref> |
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | Voltage-dependent potassium channels (K(v)s) gate in response to changes in electrical membrane potential by coupling a voltage-sensing module with a K(+)-selective pore. Animal toxins targeting K(v)s are classified as pore blockers, which physically plug the ion conduction pathway, or as gating modifiers, which disrupt voltage sensor movements. A third group of toxins blocks K(+) conduction by an unknown mechanism via binding to the channel turrets. Here, we show that Conkunitzin-S1 (Cs1), a peptide toxin isolated from cone snail venom, binds at the turrets of K(v)1.2 and targets a network of hydrogen bonds that govern water access to the peripheral cavities that surround the central pore. The resulting ectopic water flow triggers an asymmetric collapse of the pore by a process resembling that of inherent slow inactivation. Pore modulation by animal toxins exposes the peripheral cavity of K(+) channels as a novel pharmacological target and provides a rational framework for drug design. | ||
+ | |||
+ | Pore-modulating toxins exploit inherent slow inactivation to block K(+) channels.,Karbat I, Altman-Gueta H, Fine S, Szanto T, Hamer-Rogotner S, Dym O, Frolow F, Gordon D, Panyi G, Gurevitz M, Reuveny E Proc Natl Acad Sci U S A. 2019 Sep 10;116(37):18700-18709. doi: , 10.1073/pnas.1908903116. Epub 2019 Aug 23. PMID:31444298<ref>PMID:31444298</ref> | ||
+ | |||
+ | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
+ | </div> | ||
+ | <div class="pdbe-citations 6q6c" style="background-color:#fffaf0;"></div> | ||
== References == | == References == | ||
<references/> | <references/> | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
+ | [[Category: Conus striatus]] | ||
[[Category: Large Structures]] | [[Category: Large Structures]] | ||
- | [[Category: Dym | + | [[Category: Dym O]] |
- | [[Category: Fine | + | [[Category: Fine S]] |
- | [[Category: Frolow | + | [[Category: Frolow F]] |
- | [[Category: Gordon | + | [[Category: Gordon D]] |
- | [[Category: Gueta | + | [[Category: Gueta H]] |
- | [[Category: Gurevitz | + | [[Category: Gurevitz M]] |
- | [[Category: Hamer-Rogotner | + | [[Category: Hamer-Rogotner S]] |
- | [[Category: Karbat | + | [[Category: Karbat I]] |
- | [[Category: Panyi | + | [[Category: Panyi G]] |
- | [[Category: Reuveny | + | [[Category: Reuveny E]] |
- | [[Category: Szanto | + | [[Category: Szanto T]] |
- | + |
Current revision
Pore-modulating toxins exploit inherent slow inactivation to block K+ channels
|
Categories: Conus striatus | Large Structures | Dym O | Fine S | Frolow F | Gordon D | Gueta H | Gurevitz M | Hamer-Rogotner S | Karbat I | Panyi G | Reuveny E | Szanto T