|
|
Line 3: |
Line 3: |
| <StructureSection load='6qrj' size='340' side='right'caption='[[6qrj]], [[Resolution|resolution]] 2.65Å' scene=''> | | <StructureSection load='6qrj' size='340' side='right'caption='[[6qrj]], [[Resolution|resolution]] 2.65Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[6qrj]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Cauvc Cauvc]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6QRJ OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6QRJ FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[6qrj]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Caulobacter_vibrioides_CB15 Caulobacter vibrioides CB15]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6QRJ OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6QRJ FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=ANP:PHOSPHOAMINOPHOSPHONIC+ACID-ADENYLATE+ESTER'>ANP</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.65Å</td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">shkA, CC_0138, CC0138 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=190650 CAUVC])</td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ANP:PHOSPHOAMINOPHOSPHONIC+ACID-ADENYLATE+ESTER'>ANP</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6qrj FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6qrj OCA], [http://pdbe.org/6qrj PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6qrj RCSB], [http://www.ebi.ac.uk/pdbsum/6qrj PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6qrj ProSAT]</span></td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6qrj FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6qrj OCA], [https://pdbe.org/6qrj PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6qrj RCSB], [https://www.ebi.ac.uk/pdbsum/6qrj PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6qrj ProSAT]</span></td></tr> |
| </table> | | </table> |
| + | == Function == |
| + | [https://www.uniprot.org/uniprot/Q9ABT2_CAUVC Q9ABT2_CAUVC] |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 21: |
Line 23: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Cauvc]] | + | [[Category: Caulobacter vibrioides CB15]] |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Dubey, B N]] | + | [[Category: Dubey BN]] |
- | [[Category: Schirmer, T]] | + | [[Category: Schirmer T]] |
- | [[Category: Auto-inhibitio]]
| + | |
- | [[Category: Cyclic di-gmp]]
| + | |
- | [[Category: Hybride histidine kinase]]
| + | |
- | [[Category: Second messenger]]
| + | |
- | [[Category: Shka]]
| + | |
- | [[Category: Signaling protein]]
| + | |
| Structural highlights
Function
Q9ABT2_CAUVC
Publication Abstract from PubMed
Cytosolic hybrid histidine kinases (HHKs) constitute major signaling nodes that control various biological processes, but their input signals and how these are processed are largely unknown. In Caulobacter crescentus, the HHK ShkA is essential for accurate timing of the G1-S cell cycle transition and is regulated by the corresponding increase in the level of the second messenger c-di-GMP. Here, we use a combination of X-ray crystallography, NMR spectroscopy, functional analyses, and kinetic modeling to reveal the regulatory mechanism of ShkA. In the absence of c-di-GMP, ShkA predominantly adopts a compact domain arrangement that is catalytically inactive. C-di-GMP binds to the dedicated pseudoreceiver domain Rec1, thereby liberating the canonical Rec2 domain from its central position where it obstructs the large-scale motions required for catalysis. Thus, c-di-GMP cannot only stabilize domain interactions, but also engage in domain dissociation to allosterically invoke a downstream effect. Enzyme kinetics data are consistent with conformational selection of the ensemble of active domain constellations by the ligand and show that autophosphorylation is a reversible process.
Hybrid histidine kinase activation by cyclic di-GMP-mediated domain liberation.,Dubey BN, Agustoni E, Bohm R, Kaczmarczyk A, Mangia F, von Arx C, Jenal U, Hiller S, Plaza-Menacho I, Schirmer T Proc Natl Acad Sci U S A. 2019 Dec 27. pii: 1911427117. doi:, 10.1073/pnas.1911427117. PMID:31882446[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Dubey BN, Agustoni E, Bohm R, Kaczmarczyk A, Mangia F, von Arx C, Jenal U, Hiller S, Plaza-Menacho I, Schirmer T. Hybrid histidine kinase activation by cyclic di-GMP-mediated domain liberation. Proc Natl Acad Sci U S A. 2019 Dec 27. pii: 1911427117. doi:, 10.1073/pnas.1911427117. PMID:31882446 doi:http://dx.doi.org/10.1073/pnas.1911427117
|