|
|
Line 3: |
Line 3: |
| <StructureSection load='6rp1' size='340' side='right'caption='[[6rp1]], [[Resolution|resolution]] 1.49Å' scene=''> | | <StructureSection load='6rp1' size='340' side='right'caption='[[6rp1]], [[Resolution|resolution]] 1.49Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[6rp1]] is a 3 chain structure with sequence from [http://en.wikipedia.org/wiki/Sporosarcina_pasteurii Sporosarcina pasteurii]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6RP1 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6RP1 FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[6rp1]] is a 3 chain structure with sequence from [https://en.wikipedia.org/wiki/Sporosarcina_pasteurii Sporosarcina pasteurii]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6RP1 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6RP1 FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=2PA:DIAMIDOPHOSPHATE'>2PA</scene>, <scene name='pdbligand=EDO:1,2-ETHANEDIOL'>EDO</scene>, <scene name='pdbligand=NI:NICKEL+(II)+ION'>NI</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.49Å</td></tr> |
- | <tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=CXM:N-CARBOXYMETHIONINE'>CXM</scene>, <scene name='pdbligand=KCX:LYSINE+NZ-CARBOXYLIC+ACID'>KCX</scene></td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=2PA:DIAMIDOPHOSPHATE'>2PA</scene>, <scene name='pdbligand=CXM:N-CARBOXYMETHIONINE'>CXM</scene>, <scene name='pdbligand=EDO:1,2-ETHANEDIOL'>EDO</scene>, <scene name='pdbligand=KCX:LYSINE+NZ-CARBOXYLIC+ACID'>KCX</scene>, <scene name='pdbligand=NI:NICKEL+(II)+ION'>NI</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Urease Urease], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.5.1.5 3.5.1.5] </span></td></tr>
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6rp1 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6rp1 OCA], [https://pdbe.org/6rp1 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6rp1 RCSB], [https://www.ebi.ac.uk/pdbsum/6rp1 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6rp1 ProSAT]</span></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6rp1 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6rp1 OCA], [http://pdbe.org/6rp1 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6rp1 RCSB], [http://www.ebi.ac.uk/pdbsum/6rp1 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6rp1 ProSAT]</span></td></tr> | + | |
| </table> | | </table> |
| + | == Function == |
| + | [https://www.uniprot.org/uniprot/URE3_SPOPA URE3_SPOPA] |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 18: |
Line 19: |
| </div> | | </div> |
| <div class="pdbe-citations 6rp1" style="background-color:#fffaf0;"></div> | | <div class="pdbe-citations 6rp1" style="background-color:#fffaf0;"></div> |
| + | |
| + | ==See Also== |
| + | *[[Urease 3D structures|Urease 3D structures]] |
| == References == | | == References == |
| <references/> | | <references/> |
Line 24: |
Line 28: |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
| [[Category: Sporosarcina pasteurii]] | | [[Category: Sporosarcina pasteurii]] |
- | [[Category: Urease]]
| + | [[Category: Benini S]] |
- | [[Category: Benini, S]] | + | [[Category: Cianci M]] |
- | [[Category: Cianci, M]] | + | [[Category: Ciurli S]] |
- | [[Category: Ciurli, S]] | + | [[Category: Mazzei L]] |
- | [[Category: Mazzei, L]] | + | |
- | [[Category: Hydrolase]]
| + | |
- | [[Category: Nbpto]]
| + | |
- | [[Category: Nickel]]
| + | |
- | [[Category: Urea]]
| + | |
| Structural highlights
6rp1 is a 3 chain structure with sequence from Sporosarcina pasteurii. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
| Method: | X-ray diffraction, Resolution 1.49Å |
Ligands: | , , , , , |
Resources: | FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT |
Function
URE3_SPOPA
Publication Abstract from PubMed
Urease uses a cluster of two Ni(II) ions to activate a water molecule for urea hydrolysis. The key to this unsurpassed enzyme is a change in the conformation of a flexible structural motif, the mobile flap, which must be able to move from an open to a closed conformation to stabilize the chelating interaction of urea with the Ni(II) cluster. This conformational change brings the imidazole side chain functionality of a critical histidine residue, alphaHis323, in close proximity to the site that holds the transition state structure of the reaction, facilitating its evolution to the products. Herein, we describe the influence of the solution pH in modulating the conformation of the mobile flap. High-resolution crystal structures of urease inhibited in the presence of N-(n-butyl)phosphoric triamide (NBPTO) at pH 6.5 and pH 7.5 are described and compared to the analogous structure obtained at pH 7.0. The kinetics of urease in the absence and presence of NBPTO are investigated by a calorimetric assay in the pH 6.0-8.0 range. The results indicate that pH modulates the protonation state of alphaHis323, which was revealed to have pKa =6.6, and consequently the conformation of the mobile flap. Two additional residues (alphaAsp224 and alphaArg339) are shown to be key factors for the conformational change. The role of pH in modulating the catalysis of urea hydrolysis is clarified through the molecular and structural details of the interplay between protein conformation and solution acidity in the paradigmatic case of a metalloenzyme.
The Impact of pH on Catalytically Critical Protein Conformational Changes: The Case of the Urease, a Nickel Enzyme.,Mazzei L, Cianci M, Benini S, Ciurli S Chemistry. 2019 Sep 18;25(52):12145-12158. doi: 10.1002/chem.201902320. Epub 2019, Aug 28. PMID:31271481[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Mazzei L, Cianci M, Benini S, Ciurli S. The Impact of pH on Catalytically Critical Protein Conformational Changes: The Case of the Urease, a Nickel Enzyme. Chemistry. 2019 Sep 18;25(52):12145-12158. doi: 10.1002/chem.201902320. Epub 2019, Aug 28. PMID:31271481 doi:http://dx.doi.org/10.1002/chem.201902320
|