|
|
Line 3: |
Line 3: |
| <StructureSection load='6tnm' size='340' side='right'caption='[[6tnm]], [[Resolution|resolution]] 2.95Å' scene=''> | | <StructureSection load='6tnm' size='340' side='right'caption='[[6tnm]], [[Resolution|resolution]] 2.95Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[6tnm]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Ecoli Ecoli]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6TNM OCA]. For a <b>guided tour on the structure components</b> use [http://proteopedia.org/fgij/fg.htm?mol=6TNM FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[6tnm]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli_K-12 Escherichia coli K-12]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6TNM OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6TNM FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ATP:ADENOSINE-5-TRIPHOSPHATE'>ATP</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=NO3:NITRATE+ION'>NO3</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.95Å</td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">fadB, oldB, b3846, JW3822 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=83333 ECOLI])</td></tr>
| + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ATP:ADENOSINE-5-TRIPHOSPHATE'>ATP</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=NO3:NITRATE+ION'>NO3</scene></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://proteopedia.org/fgij/fg.htm?mol=6tnm FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6tnm OCA], [http://pdbe.org/6tnm PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6tnm RCSB], [http://www.ebi.ac.uk/pdbsum/6tnm PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6tnm ProSAT]</span></td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6tnm FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6tnm OCA], [https://pdbe.org/6tnm PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6tnm RCSB], [https://www.ebi.ac.uk/pdbsum/6tnm PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6tnm ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/FADB_ECOLI FADB_ECOLI]] Involved in the aerobic and anaerobic degradation of long-chain fatty acids via beta-oxidation cycle. Catalyzes the formation of 3-oxoacyl-CoA from enoyl-CoA via L-3-hydroxyacyl-CoA. It can also use D-3-hydroxyacyl-CoA and cis-3-enoyl-CoA as substrate.[HAMAP-Rule:MF_01621]<ref>PMID:12535077</ref> <ref>PMID:1748662</ref> <ref>PMID:368024</ref> <ref>PMID:8454629</ref> <ref>PMID:8755745</ref> | + | [https://www.uniprot.org/uniprot/FADB_ECOLI FADB_ECOLI] Involved in the aerobic and anaerobic degradation of long-chain fatty acids via beta-oxidation cycle. Catalyzes the formation of 3-oxoacyl-CoA from enoyl-CoA via L-3-hydroxyacyl-CoA. It can also use D-3-hydroxyacyl-CoA and cis-3-enoyl-CoA as substrate.[HAMAP-Rule:MF_01621]<ref>PMID:12535077</ref> <ref>PMID:1748662</ref> <ref>PMID:368024</ref> <ref>PMID:8454629</ref> <ref>PMID:8755745</ref> |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 23: |
Line 23: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Ecoli]] | + | [[Category: Escherichia coli K-12]] |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Hynonen, M J]] | + | [[Category: Hynonen MJ]] |
- | [[Category: Sah-Teli, S K]] | + | [[Category: Sah-Teli SK]] |
- | [[Category: Venkatesan, R]] | + | [[Category: Venkatesan R]] |
- | [[Category: Wierenga, R K]] | + | [[Category: Wierenga RK]] |
- | [[Category: Beta oxidation]]
| + | |
- | [[Category: Dehydrogenase]]
| + | |
- | [[Category: Fatty acid oxidation]]
| + | |
- | [[Category: Hydratase]]
| + | |
- | [[Category: Lipid metabolism]]
| + | |
- | [[Category: Oxidoreductase]]
| + | |
- | [[Category: Trifunctional enzyme]]
| + | |
| Structural highlights
Function
FADB_ECOLI Involved in the aerobic and anaerobic degradation of long-chain fatty acids via beta-oxidation cycle. Catalyzes the formation of 3-oxoacyl-CoA from enoyl-CoA via L-3-hydroxyacyl-CoA. It can also use D-3-hydroxyacyl-CoA and cis-3-enoyl-CoA as substrate.[HAMAP-Rule:MF_01621][1] [2] [3] [4] [5]
Publication Abstract from PubMed
Degradation of fatty acids by the beta-oxidation pathway results in the formation of acetyl-CoA which enters the TCA cycle for the production of ATP. In E. coli, the last three steps of the beta-oxidation are catalyzed by two heterotetrameric alpha2beta2 enzymes namely the aerobic trifunctional enzyme (EcTFE) and the anaerobic TFE (anEcTFE). The alpha-subunit of TFE has 2E-enoyl-CoA hydratase (ECH) and 3S-hydroxyacyl-CoA dehydrogenase (HAD) activities whereas the beta-subunit is a thiolase with 3-ketoacyl-CoA thiolase (KAT) activity. Recently, it has been shown that the two TFEs have complementary substrate specificities allowing for the complete degradation of long chain fatty acyl-CoAs into acetyl-CoA under aerobic conditions. Also, it has been shown that the tetrameric EcTFE and anEcTFE assemblies are similar to the TFEs of Pseudomans fragi and human, respectively. Here the properties of the EcTFE subunits are further characterized. Strikingly, it is observed that when expressed separately, EcTFE-alpha is a catalytically active monomer whereas EcTFE-beta is inactive. However, when mixed together active EcTFE tetramer is reconstituted. The crystal structure of the EcTFE-alpha chain is also reported, complexed with ATP, bound in its HAD active site. Structural comparisons show that the EcTFE hydratase active site has a relatively small fatty acyl tail binding pocket when compared to other TFEs in good agreement with its preferred specificity for short chain 2E-enoyl-CoA substrates. Furthermore, it is observed that millimolar concentrations of ATP destabilize the EcTFE complex, and this may have implications for the ATP-mediated regulation of beta-oxidation in E. coli.
Insights into the stability and substrate specificity of the E. coli aerobic beta-oxidation trifunctional enzyme complex.,Sah-Teli SK, Hynonen MJ, Sulu R, Dalwani S, Schmitz W, Wierenga RK, Venkatesan R J Struct Biol. 2020 Mar 11:107494. doi: 10.1016/j.jsb.2020.107494. PMID:32171906[6]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Campbell JW, Morgan-Kiss RM, Cronan JE Jr. A new Escherichia coli metabolic competency: growth on fatty acids by a novel anaerobic beta-oxidation pathway. Mol Microbiol. 2003 Feb;47(3):793-805. doi: 10.1046/j.1365-2958.2003.03341.x. PMID:12535077 doi:http://dx.doi.org/10.1046/j.1365-2958.2003.03341.x
- ↑ Smeland TE, Cuebas D, Schulz H. Epimerization of 3-hydroxy-4-trans-decenoyl coenzyme A by a dehydration/hydration mechanism catalyzed by the multienzyme complex of fatty acid oxidation from Escherichia coli. J Biol Chem. 1991 Dec 15;266(35):23904-8. PMID:1748662
- ↑ Pramanik A, Pawar S, Antonian E, Schulz H. Five different enzymatic activities are associated with the multienzyme complex of fatty acid oxidation from Escherichia coli. J Bacteriol. 1979 Jan;137(1):469-73. PMID:368024
- ↑ Yang SY, Elzinga M. Association of both enoyl coenzyme A hydratase and 3-hydroxyacyl coenzyme A epimerase with an active site in the amino-terminal domain of the multifunctional fatty acid oxidation protein from Escherichia coli. J Biol Chem. 1993 Mar 25;268(9):6588-92. PMID:8454629
- ↑ He XY, Yang SY. Histidine-450 is the catalytic residue of L-3-hydroxyacyl coenzyme A dehydrogenase associated with the large alpha-subunit of the multienzyme complex of fatty acid oxidation from Escherichia coli. Biochemistry. 1996 Jul 23;35(29):9625-30. doi: 10.1021/bi960374y. PMID:8755745 doi:http://dx.doi.org/10.1021/bi960374y
- ↑ Sah-Teli SK, Hynonen MJ, Sulu R, Dalwani S, Schmitz W, Wierenga RK, Venkatesan R. Insights into the stability and substrate specificity of the E. coli aerobic beta-oxidation trifunctional enzyme complex. J Struct Biol. 2020 Mar 11:107494. doi: 10.1016/j.jsb.2020.107494. PMID:32171906 doi:http://dx.doi.org/10.1016/j.jsb.2020.107494
|