7oll

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (12:52, 1 February 2024) (edit) (undo)
 
Line 4: Line 4:
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[7oll]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Aspergillus_nidulans_FGSC_A4 Aspergillus nidulans FGSC A4]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7OLL OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7OLL FirstGlance]. <br>
<table><tr><td colspan='2'>[[7oll]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Aspergillus_nidulans_FGSC_A4 Aspergillus nidulans FGSC A4]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7OLL OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7OLL FirstGlance]. <br>
-
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=BR:BROMIDE+ION'>BR</scene>, <scene name='pdbligand=CO0:(3~{Z})-4-methyl-3-(phenylmethylidene)-1~{H}-1,4-benzodiazepine-2,5-dione'>CO0</scene>, <scene name='pdbligand=NI:NICKEL+(II)+ION'>NI</scene>, <scene name='pdbligand=TRS:2-AMINO-2-HYDROXYMETHYL-PROPANE-1,3-DIOL'>TRS</scene></td></tr>
+
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.9&#8491;</td></tr>
 +
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=BR:BROMIDE+ION'>BR</scene>, <scene name='pdbligand=CO0:(3~{Z})-4-methyl-3-(phenylmethylidene)-1~{H}-1,4-benzodiazepine-2,5-dione'>CO0</scene>, <scene name='pdbligand=NI:NICKEL+(II)+ION'>NI</scene>, <scene name='pdbligand=TRS:2-AMINO-2-HYDROXYMETHYL-PROPANE-1,3-DIOL'>TRS</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7oll FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7oll OCA], [https://pdbe.org/7oll PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7oll RCSB], [https://www.ebi.ac.uk/pdbsum/7oll PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7oll ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7oll FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7oll OCA], [https://pdbe.org/7oll PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7oll RCSB], [https://www.ebi.ac.uk/pdbsum/7oll PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7oll ProSAT]</span></td></tr>
</table>
</table>
== Function ==
== Function ==
-
[[https://www.uniprot.org/uniprot/ASQJ_EMENI ASQJ_EMENI]] Iron/alpha-ketoglutarate-dependent dioxygenase; part of the gene cluster that mediates the biosynthesis of the aspoquinolone mycotoxins (PubMed:25251934, PubMed:26553478). The first stage is catalyzed by the nonribosomal pepdide synthetase asqK that condenses anthranilic acid and O-methyl-L-tyrosine to produce 4'-methoxycyclopeptin (PubMed:25251934). AsqK is also able to use anthranilic acid and L-phenylalanine as substrates to produce cyclopeptin, but at a tenfold lower rate (PubMed:25251934). 4'-methoxycyclopeptin is then converted to 4'-methoxydehydrocyclopeptin by the ketoglutarate-dependent dioxygenase asqJ through dehydrogenation to form a double bond between C-alpha and C-beta of the O-methyltyrosine side chain (PubMed:25251934, PubMed:26553478). AsqJ also converts its first product 4'-methoxydehydrocyclopeptin to 4'-methoxycyclopenin (PubMed:25251934). AsqJ is a very unique dioxygenase which is capable of catalyzing radical-mediated dehydrogenation and epoxidation reactions sequentially on a 6,7-benzo-diazepinedione substrate in the 4'-methoxyviridicatin biosynthetic pathway (PubMed:25251934). The following conversion of 4'-methoxycyclopenin into 4'-methoxyviridicatin proceeds non-enzymatically (PubMed:25251934). AsqJ is also capable of converting cyclopeptin into dehydrocyclopeptin and cyclopenin in a sequential fashion (PubMed:25251934). Cyclopenin can be converted into viridicatin non-enzymatically (PubMed:25251934). 4'-methoxyviridicatin likely acts as a precursor of quinolone natural products, such as aspoquinolones, peniprequinolones, penigequinolones, and yaequinolones (PubMed:25251934). Further characterization of the remaining genes in the cluster has still to be done to determine the exact identity of quinolone products this cluster is responsible for biosynthesizing (PubMed:25251934).<ref>PMID:25251934</ref> <ref>PMID:26553478</ref>
+
[https://www.uniprot.org/uniprot/ASQJ_EMENI ASQJ_EMENI] Iron/alpha-ketoglutarate-dependent dioxygenase; part of the gene cluster that mediates the biosynthesis of the aspoquinolone mycotoxins (PubMed:25251934, PubMed:26553478). The first stage is catalyzed by the nonribosomal pepdide synthetase asqK that condenses anthranilic acid and O-methyl-L-tyrosine to produce 4'-methoxycyclopeptin (PubMed:25251934). AsqK is also able to use anthranilic acid and L-phenylalanine as substrates to produce cyclopeptin, but at a tenfold lower rate (PubMed:25251934). 4'-methoxycyclopeptin is then converted to 4'-methoxydehydrocyclopeptin by the ketoglutarate-dependent dioxygenase asqJ through dehydrogenation to form a double bond between C-alpha and C-beta of the O-methyltyrosine side chain (PubMed:25251934, PubMed:26553478). AsqJ also converts its first product 4'-methoxydehydrocyclopeptin to 4'-methoxycyclopenin (PubMed:25251934). AsqJ is a very unique dioxygenase which is capable of catalyzing radical-mediated dehydrogenation and epoxidation reactions sequentially on a 6,7-benzo-diazepinedione substrate in the 4'-methoxyviridicatin biosynthetic pathway (PubMed:25251934). The following conversion of 4'-methoxycyclopenin into 4'-methoxyviridicatin proceeds non-enzymatically (PubMed:25251934). AsqJ is also capable of converting cyclopeptin into dehydrocyclopeptin and cyclopenin in a sequential fashion (PubMed:25251934). Cyclopenin can be converted into viridicatin non-enzymatically (PubMed:25251934). 4'-methoxyviridicatin likely acts as a precursor of quinolone natural products, such as aspoquinolones, peniprequinolones, penigequinolones, and yaequinolones (PubMed:25251934). Further characterization of the remaining genes in the cluster has still to be done to determine the exact identity of quinolone products this cluster is responsible for biosynthesizing (PubMed:25251934).<ref>PMID:25251934</ref> <ref>PMID:26553478</ref>
<div style="background-color:#fffaf0;">
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
== Publication Abstract from PubMed ==
Line 18: Line 19:
</div>
</div>
<div class="pdbe-citations 7oll" style="background-color:#fffaf0;"></div>
<div class="pdbe-citations 7oll" style="background-color:#fffaf0;"></div>
 +
 +
==See Also==
 +
*[[Dioxygenase 3D structures|Dioxygenase 3D structures]]
== References ==
== References ==
<references/>
<references/>

Current revision

Dioxygenase AsqJ mutant (V72I) in complex with 2b and Tris

PDB ID 7oll

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools